Physics, asked by rithik2222yadav, 1 year ago

find the angle between two vector​

Attachments:

Answers

Answered by Anonymous
12

AnswEr :

Given,

  • \sf \vec{a} = \hat{i} + \hat{j} - \hat{k} \\

  • \sf \vec{b} = 2\hat{i} + 3 \hat{j} + \hat{k}

The Dot Product between any two vectors is given as :

 \sf \:  \vec{a} \: . \:  \vec{b} =  | \vec{a}|  | \vec{b}| cos( \alpha )

For the angle between the two vectors :

 \implies \:  \sf \:  \cos( \alpha )  =  \dfrac{ \vec{a}. \vec{b}}{  | \vec{a}  || \vec{b}| }

The magnitude of a vector r = xi + yj + zk is calculated as :

 \sf  | \vec{r}|  =  \sqrt{ {x}^{2} +  {y}^{2}   +  {z}^{2} }

Thus,

  \sf \:  | \vec{a}|  =  \sqrt{1 {}^{2}  +  {1}^{2} + ( -  {1})^{2}  }  =  \sqrt{3}

Also,

 \sf \:  | \vec{b}|  =  \sqrt{2 {}^{2} +  {3}^{2}  +  {1}^{2}  }  =  \sqrt{14}

Now,

\sf \vec{a} . \vec{b}= (\hat{i} + \hat{j} - \hat{k})(2 \hat{i} + 3 \hat{j} +  \hat{k}) \\  \\  \longrightarrow \:  \sf \vec{a}. \vec{b} = 2 { \hat{i}}^{2}  + 3 \hat{j} {}^{2}  -  \hat{k} {}^{2}  \\  \\  \longrightarrow \:  \sf \:  \vec{a}. \vec{b} = 2 + 3 - 1 \\  \\  \longrightarrow \sf \:  \vec{a}. \vec{b} = 4

Therefore,

 \sf \:  cos(  \alpha ) =  \dfrac{4}{ \sqrt{14}  \times  \sqrt{3} }  \\  \\  \implies \:  \sf cos( \alpha )  =  \dfrac{4}{ \sqrt{42} }  \\  \\  \implies \:  \sf \:  cos( \alpha )  =  \dfrac{2 \sqrt{2} }{ \sqrt{21} }  \\   \\  \implies \boxed{ \boxed{\sf \:  \alpha  =  cos {}^{ - 1} ( \dfrac{2 \sqrt{2} }{ \sqrt{21} } ) }}

The angle between the two vectors is arccos(2√2/√21)

Similar questions