Physics, asked by kaishviyadav, 1 year ago

find the angle between vector A = iCAP + jcap -2 k cap and vector B = i cap + 2 J cap - K cap .



THIS QUESTION IS 11 STANDARD OF VECTOR CHAPTER

Answers

Answered by Anonymous
206
Hey!!!.....Here is ur answer

Hope it will help you
Attachments:

Anonymous: :-)
Answered by abu7878
38

Answer:

The angle between the vector is \bold{\theta=\cos ^{-1} \frac{5}{6}}

Explanation:

Given:

Vector \mathrm{A}=\hat{\imath}+\hat{\jmath}-2 \hat{k}

Vector \mathrm{B}=\hat{\imath}+2 \hat{\jmath}-\hat{k}

To find angle we know the formula,

\cos \theta=\frac{|\vec{A} \cdot \vec{B}|}{\left[\sqrt{a_{1}^{3}+b_{1}^{3}+c_{2}^{2}}\right]\left[\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}\right]}

Here a_{1}=1 b_{1}=1 c_{1}=-2 a_{2}=1 b_{2}=2 c_{2}=1

Substitute the values in the above formula we get,

\cos \theta=\frac{[1+2+2]}{[\sqrt{1+1+4}][\sqrt{1+4+1}]}

By simplifying the above expression we get,

\cos \theta=\frac{5}{[\sqrt{6}][\sqrt{6}]} [We know that[√6][√6]=6]

\cos \theta=\frac{5}{6}

To find the angle shift the cos to the RHS

\theta=\cos ^{-1} \frac{5}{6}

Similar questions