Find the angle between vectors A=i-2j+k and vector B=4i-4j+7k.
Answers
Answered by
1
Answer:
θ = cos⁻¹ {19/(√6*9)}
Explanation:
Given
A = i - 2j + k
B = 4i - 4j + 7k
Let angle between A and B be θ.
|A| = |i - 2j + k| | |B| = |4i - 4j + 7k
= | =
= √(1 + 4 +1) | = √(16 + 16 + 49)
∴|A| = √6 | ∴|B| = √81 = 9
And
A.B = (i - 2j + k).(4i - 4j + 7k)
= 4 + 8 + 7 [∵i.i = j.j = k.k = 1 and rest is 0 in dot product]
⇒A.B = 19
We know that
cos(a,b) = a.b/(|a|*|b|)
∴cos (A,B) = A.B/(|A|*|B|)
⇒cos θ = 19/(√6*9)
∴θ = cos⁻¹ {19/(√6*9)}
Similar questions
Social Sciences,
3 months ago
English,
7 months ago
Social Sciences,
7 months ago
Science,
1 year ago