Math, asked by ganapatipatnaik1123, 4 months ago

find the angle between x+2y+9=0 and 3x+y+7=0

Answers

Answered by amansharma264
6

EXPLANATION.

Angle between the lines,

⇒ x + 2y + 9 = 0.

⇒ 3x + y + 7 = 0.

As we know that,

Slope of intercept = y = mx + c.

⇒ x + 2y + 9 = 0.

⇒ 2y = - x - 9.

⇒ y = - x/2 - 9/2.

Slope of the line x + 2y + 9 = 0 is -1/2.

M₁ = -1/2.

⇒ 3x + y + 7 = 0.

⇒ y = - 3x - 7.

Slope of the line 3x + y + 7 = 0 is = -3.

⇒ M₂ = -3.

As we know that,

⇒ tan∅ = | M₁ - M₂/1 + M₁M₂ |.

Put the value of M₁ & M₂ in equation, we get.

⇒ tan∅ = | -1/2 - (-3)/1 + (-1/2)(-3) |.

⇒ tan∅ = | -1/2 + 3/1 + 3/2 |.

⇒ tan∅ = | - 1 + 6/2 + 3/2 |.

⇒ tan∅ = | 5/2/5/2 |.

⇒ tan∅ = 1.

⇒ tan∅ = 45°.

∅ = π/4.

                                                                                                                     

MORE INFORMATION.

Equation of tangent.

Equation of tangent to the curve y = f(x) at p(x₁, y₁) is,

(y - y₁) = (dy/dx) (x - x₁).

(1) = The tangent at (x₁, y₁) is parallel to x-axis = (dy/dx) = 0.

(2) = The tangent at (x₁, y₁) is parallel to y-axis = (dy/dx) = ∞.

(3) = The tangent lines makes equal angle with the axes = (dy/dx) = ± 1.

Similar questions