Math, asked by pallashiva99, 4 months ago

Find the angle of depression of stick leaning against a wall of length 13m and the foot of the ladder is 6.5m from the wall.
30°​

Answers

Answered by mathdude500
3

Correct Question is

  • Find the angle of depression of ladder leaning against a wall of length 13m and the foot of the ladder is 6.5m from the wall.

\large\underline{\sf{Solution-}}

Let AB be the wall and AC be the ladder leaning against the wall such that its top touches the wall at A and foot of ladder touches the ground at C.

So,

  • Length of Ladder, AC = 13 m

  • Distance of foot of ladder from the bottom of the wall, BC = 6.5 m

Let

  • The angle of depression be 'θ'.

Now,

\rm :\longmapsto\:In  \: \triangle  \: ABC

\rm :\longmapsto\: cos \: \theta \:  = \: \dfrac{BC}{AC}

\rm :\longmapsto\: cos \: \theta \:  = \:\dfrac{6.5}{13}

\rm :\longmapsto\: cos \: \theta \:  = \:\dfrac{1}{2}

\rm :\longmapsto\: cos \: \theta \:  = \:cos60 \degree

\rm :\implies\:\theta \:  =  \: 60 \degree

Additional Information

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions