Math, asked by mmkutty2010, 1 year ago

Find the angle of elevation of the sun, when the length of a shadow is 3 times the height of the tree?


alfastrek: I guess the questions is incorrect.it should be- length of a shadow is root3 times the height of the tree. Please check the question

Answers

Answered by sreejamiyami
1

Answer:

Step-by-step explanation:

Let,

the height of the tree be x m.

then, the height of the shadow is 3x m

Angle of Elevation of the Sun=x/3x=1/3

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Angle\:of\:elevation=}tan^{-1}(\frac{1}{3})}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about the length of shadow of a tower is 3 times to it's height.

• We have to find the angle of elevation.

 \green{\underline \bold{Given :}} \\ : \implies \text{Length\:of\:shadow=3 times height\:of\:tree} \\ \\   \red{\underline \bold{To \: Find:}} \\ : \implies \text{Angle\:of\:elevation=  ?}

• Accroding to given question :

\text{Let\:length\:of\:tree\:be\:x} \\\\\bold{In \:  \triangle \: ABC} \\   : \implies tan \:  \theta =  \frac{\text{Perpendicular}}{\text{Base}} \\  \\  : \implies  tan \: \theta =  \frac{x}{3x}  \\  \\   : \implies  tan\:\theta  =  \frac{1}{3}   \\  \\ \green{ : \implies \theta = tan^{-1}(\frac{1}{3})} \\  \\   \green{\therefore  \text{Angle\: of \: elevation}= tan^{-1}(\frac{1}{3})}

Similar questions