Find the angle of projection for a projcetile motin whose range is n times to the h=maximum height
Answers
Answered by
0
the correct answer is (theta) = tan^(-1) 4/n
How? (Solution below)
Let (theta) be the angle of projection.
R (range) = [2(u^2) sin(theta) cos(theta)]/(g) ...(eq1)
H (max ht.) = [(u^2) sin^2(theta)]/(2g) ...(eq2)
Also, R = n (H)
Now, by putting the values from eq 1 n 2 in this we get,
[2(u^2) sin(theta) cos(theta)]/(g) = n [(u^2) sin^2(theta)]/(2g)
[2 sin(theta) cos(theta)] = n [sin^2(theta)]/(2)
[4 sin(theta) cos(theta)] = n [sin(theta) sin(theta)]
[4 cos(theta)] = n [sin(theta)]
4 = n [tan(theta)]
tan(theta) = 4/n
(theta) = tan^(-1) 4/n
How? (Solution below)
Let (theta) be the angle of projection.
R (range) = [2(u^2) sin(theta) cos(theta)]/(g) ...(eq1)
H (max ht.) = [(u^2) sin^2(theta)]/(2g) ...(eq2)
Also, R = n (H)
Now, by putting the values from eq 1 n 2 in this we get,
[2(u^2) sin(theta) cos(theta)]/(g) = n [(u^2) sin^2(theta)]/(2g)
[2 sin(theta) cos(theta)] = n [sin^2(theta)]/(2)
[4 sin(theta) cos(theta)] = n [sin(theta) sin(theta)]
[4 cos(theta)] = n [sin(theta)]
4 = n [tan(theta)]
tan(theta) = 4/n
(theta) = tan^(-1) 4/n
Similar questions