Physics, asked by PreetamAddy, 1 year ago

find the angle of projection of a body for which its horizontal range is equal to the maximum height reached by it

Answers

Answered by Mysterioushine
15

GIVEN :-

  • Horizontal range is equal to maximum height

TO FIND :-

  • Angle of projection of the body

SOLUTION :-

Range of a ptojectile is given by ,

 \large \underline {\bold {\boxed  {\bigstar{\red {\sf{ \: r =  \frac{  {u}^{2} \sin(2 \theta)  }{g}}}}}}}

Maximum height of a projectile is given by,

 \large {\underline {\bold {\boxed {\bigstar {\red {\sf{ \: h =  \frac{ {u}^{2} \sin {}^{2} ( \theta)  }{2g} }}}}}}}

Where ,

  • u is initial velocity
  • θ is angle of projection
  • g is acceleration due to gravity

According to the question ,

 \implies \sf \dfrac{ {u}^{2} \sin(2 \theta)  }{g}  =  \dfrac{ {u}^{2} \sin {}^{2} ( \theta)  }{2g}  \\  \\  \implies \sf \:  \frac{ \cancel{ {u}^{2}} \sin(2 \theta)  }{ \cancel{g}}  =  \frac{ \cancel{ {u}^{2} } \sin {}^{2} ( \theta) }{2 \cancel{g}}  \\  \\  \implies \sf \:  \sin( 2\theta)  =  \frac{ \sin {}^{2} ( \theta) }{2}  \\  \\  \implies \sf \: 2 \sin(2 \theta)  =   \sin {}^{2} ( \theta)

 \large {\underline {\bold {\boxed {\bigstar {\red {\sf{  \: \sin(2 \theta)  = 2 \sin( \theta) \cos( \theta)  }}}}}}}

 \implies \sf \: 2[2 \sin( \theta)  \cos( \theta) ] =  \sin { }^{2} ( \theta)  \\  \\  \implies \sf \: 4  \cancel{\ sin( \theta)}  \cos( \theta)  =  \cancel{ \sin {}^{2} ( \theta)  }\\  \\  \implies \sf \: 4 \cos( \theta)  =  \sin( \theta)  \\  \\  \implies \: 4 =  \frac{ \sin( \theta) }{ \cos( \theta) }

 \large {\underline {\bold {\boxed {\bigstar {\red {\sf{  \: \tan(\theta)  =   \dfrac{\sin( \theta)}{ \cos( \theta)}  }}}}}}}

 \implies \sf \: 4 =  \tan( \theta)  \\  \\  \implies \sf \theta =  \tan {}^{ - 1} (4)

∴ The angle of projection of the body is Tan⁻¹ (4)

Similar questions