Math, asked by sardarsarnobat, 8 months ago

find the angle of tangent drawn
to the curve y=3x^2-7x +5 at the point (1,1)with the x axis​

Answers

Answered by MaheswariS
11

\underline{\textbf{Given:}}

\textsf{Curve is}\;\mathsf{y=3x^2-7x+5}

\underline{\textbf{To find:}}

\textsf{The angle of tangent to the given curve at (1,1) with the x-axis}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{y=3x^2-7x+5}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=6x-7}

\mathsf{Slope\;of\;tangent\;at\;(1,1)}

\mathsf{=\left(\dfrac{dy}{dx}\right)_{(1,1)}}

\mathsf{=6(1)-7}

\mathsf{=6-7}

\mathsf{=-1}

\implies\mathsf{tan\,\theta=-1}

\mathsf{where\;\theta\;is\;angle\;made\;by\;the\;tangent\;with\;axis}

\implies\mathsf{tan\,\theta=-1}

\implies\mathsf{-tan\,\theta=1}

\implies\mathsf{tan(\pi-\theta)=tan\dfrac{\pi}{4}}

\implies\mathsf{\pi-\theta=\dfrac{\pi}{4}}

\implies\mathsf{\theta=\pi-\dfrac{\pi}{4}}

\implies\boxed{\mathsf{\theta=\dfrac{3\pi}{4}\;(or)\;135^\circ}}

\underline{\textbf{Find more:}}

Similar questions