Math, asked by DasanPilla1294, 10 months ago

Find the angles between the planes 2x – 3y – 6z = 6 and 6x + 3y – 2z = 18

Answers

Answered by MaheswariS
0

Given planes are 2x – 3y – 6z = 6 and

6x + 3y – 2z = 18

The normal vector to the given planes are

\vec{n_1}=2\vec{i}-3\vec{j}-6\vec{k}

\vec{n_2}=6\vec{i}+3\vec{j}-2\vec{k}

The angle between the given two planes is

\boxed{\bf\:sin\theta=\frac{\vec{n_1}\;.\;\vec{n_2}}{|\vec{n_1}|\;|\vec{n_2}|}}

sin\theta=\frac{2(6)-3(3)-6(-2)}{\sqrt{4+9+36}\:\sqrt{36+9+4}}

sin\theta=\frac{12-9+12}{\sqrt{49}\:\sqrt{49}}

sin\theta=\frac{15}{49}

sin\theta=\frac{15}{49}

\implies\bf\theta=sin^{-1}(\frac{15}{49})

Similar questions