Math, asked by raginikasture, 8 months ago

Find the angles between the vectors Ā - î+j^+k^&B=i^- j^ + 2 k^.​

Answers

Answered by RiyaMoun
1

Answer:

Here is your answer :-)

Mark me as Brainalist

Attachments:
Answered by Anonymous
27

Answer:

Given:

  • \sf{\vec{A} = \hat{\imath} + \hat{\jmath}+ \hat{k}}
  • \sf{\vec{B} = \hat{\imath} - \hat{\jmath} + 2 \hat{k}}

{\mathfrak{\underline{Solution:}}}

In order to find the angle , we can use the formula for dot product of vectors. Then the angle can be found by solving dot product in component form

Dot product formula:

{\boxed{\sf{\vec{A} \ . \ \vec{B} = AB \ cos \theta}}}

➣Using this formula:

\sf{cos \theta = \dfrac{\vec{A} \ . \ \vec{B}}{AB}}

\sf{cos \theta = \dfrac{\vec{A} \ . \ \vec{B}}{|\vec{A}| \vec{B}|}}

Now finding dot product in component form :

\boxed{\sf{\vec{A} \ . \ \vec{B} = A_xB_x + A_yB_y + A_zB_z}}

\sf{\vec{A} \ . \ \vec{B} = (1)(1) + 1(-1) + 1(2)}

\sf{\vec{A} \ . \ \vec{B} = 1 - 1 + 2}

\sf{\vec{A} \ . \ \vec{B} = 2}

Now finding magnitude in component form :

\boxed{\sf{|\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}}}

For \sf{\vec{A}} :

\sf{|\vec{A}| = \sqrt{1^2 + 1^2 + 1^2}}

\sf{| \vec{A}| = \sqrt{3}}

For \sf{\vec{B}}:

\sf{|\vec{B}| = \sqrt{1^2 + (-1)^2 + 2^2}}

\sf{|\vec{B}| = \sqrt{1 + 1 + 4}}

\sf{|\vec{B}| = \sqrt{6}}

Now putting all these values in the dot product formula:

\sf{cos \theta = \dfrac{\vec{A} \ . \ \vec{B}}{|\vec{A}| |\vec{B}|}}

\sf{cos \theta = \dfrac{2}{\sqrt3 \times \sqrt{6}}}

\sf{cos \theta = \dfrac{2}{3\sqrt2}}

\sf{\theta = cos^{-1} \dfrac{\sqrt2}{3}}

•°•The angle is \sf{\bf{cos^{-1} \dfrac{\sqrt2}{3}}}.

_______________________________

Similar questions