Math, asked by hamshitha247, 1 month ago

Find the angles of quadrilateral, if the ratio of their angles is 10:11:9:6​

Answers

Answered by Tan201
14

Answer:

The angles of the quadrilateral are 100°, 110°, 90° and 60°.

Step-by-step explanation:

Given:-

Ratio of the angles of the quadrilateral = 10 : 11 : 9 : 6

To find:-

Angles of the quadrilateral

Solution:-

Let the angles of the quadrilateral be 10x, 11x, 9x and 6x

Using the angle sum property of a quadrilateral,

10x+11x+9x+6x=360°

36x=360°

x=\frac{360}{36}

x=10°

10x=10(10)

10x=100°

11x=11(10)

11x=110°

9x=9(10)

9x=90°

6x=6(10)

6x=60°

∴ The angles of the quadrilateral are 100°, 110°, 90° and 60°.

Answered by Anonymous
49

\large\sf\underline{Given\::}

  • Ratio of angles of quadrilateral = 10 : 11 : 9 : 6

\large\sf\underline{To\:find\::}

  • Measure of all the angles

\large\sf\underline{Assumption\::}

In this question the measure of angles of a quadrilateral is given in the form of ratio. So let's assume that the common multiple be x .

Therefore :

  • \sf\:∠A\:=\:10x

  • \sf\:∠B\:=\:11x

  • \sf\:∠C\:=\:9x

  • \sf\:∠D\:=\:6x

\large\sf\underline{Property\:to\:be\:used\::}

From the angle sum property of quadrilateral we know that :

\small{\mathfrak\blue{∠A+∠B+∠C+∠D\:=\:360°}}

\large\sf\underline{Solution\::}

Let's use the property by substituiting the assumed value of all four angles :

\sf\implies\:10x+11x+9x+6x=360°

\sf\implies\:21x+9x+6x=360°

\sf\implies\:30x+6x=360°

\sf\implies\:36x=360°

  • Transposing 36 to the other side it goes to the denominator

\sf\implies\:x=\frac{360°}{36}

  • Reducing it to lower term

\sf\implies\:x=\cancel{\frac{360°}{36}}

\small{\underline{\boxed{\mathrm\red{\implies\:x\:=\:10}}}}

Now let's substitute the value of x in the assumed value of all the four angles to get the measure of angles :

  • \sf\:∠A\:=\:10 \times 10 =\tt\orange{100°}

  • \sf\:∠B\:=\:11 \times 10 = \tt\orange{110°}

  • \sf\:∠C\:=\:9 \times 10 = \tt\orange{90°}

  • \sf\:∠D\:=\:6 \times 10 = \tt\orange{60°}

_______________________

Not sure if we got the measure of angles correct !?

Let's verify it :

\sf\:∠A+∠B+∠C+∠D=360°

  • Substituiting the values we got

\sf\leadsto\:100°+110°+90°+60°=360°

\sf\leadsto\:210°+90°+60°=360°

\sf\leadsto\:300°+60°=360°

\sf\leadsto\:360°=360°

\bf\leadsto\:LHS=RHS

\dag\:\underline{\sf hence\:verified\:\dag}

_______________________

!! Hope it helps !!

Similar questions