Find the answer
(a+b+c)^2 + (a+b-c)^2 + (a-b+c)^2
Answers
Answer
(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=3(a^2+b^2+c^2)+2(ac+ab-bc)
Step-by-step explanation:
Given : Expression (a+b+c)^2+(a-b+c)^2+(a+b-c)^2
To find : Simplify the expression ?
Solution :
We know that,
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
Similarly solve the second term,
(a-b+c)^2=a^2+(-b)^2+c^2+2a(-b)+2(-b)c+2ac
(a-b+c)^2=a^2+b^2+c^2-2ab-2bc+2ac
Similarly solve the third term,
(a+b+c)^2=a^2+b^2+(-c)^2+2ab+2b(-c)+2a(-c)
(a+b-c)^2=a^2+b^2+c^2+2ab-2bc-2ac
Substitute all in the expression,
(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ac
(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=3a^2+3b^2+3c^2+2ac+2ab-2bc
(a+b+c)^2+(a-b+c)^2+(a+b-c)^2=3(a^2+b^2+c^2)+2(ac+ab-bc)
Step-by-step explanation:
please mark me brainliest and follow me
Hope it's helpful. Please mark as a Brainlist.