Math, asked by krishnavignesh07, 1 year ago

find the answer fast plzzzzzz urgent​

Attachments:

Answers

Answered by Grimmjow
9

9th Problem :

If α and β are zeroes of a Quadratic polynomial Z(x) = px² + qx + r then :

★  α and β are roots of Quadratic Equation Z(x) = px² + qx + r = 0

\mathsf{\bigstar\;\;\; Z(\alpha) = 0}\\\\\\\mathsf{\bigstar\;\;\; Z(\beta) = 0}\\\\\\\mathsf{\bigstar\;\;\; Sum\;of\;the\;Roots\;(\alpha + \beta) = \dfrac{-q}{p}}\\\\\\\mathsf{\bigstar\;\;\; Product\;of\;the\;Roots\;(\alpha.\beta) = \dfrac{r}{p}}

Given : α and β are the zeroes of quadratic polynomial f(t) = t² - 5t + 3

\mathsf{\implies Sum\;of\;the\;Roots\;(\alpha + \beta) = \dfrac{5}{1} = 5}

\mathsf{\implies Product\;of\;the\;Roots\;(\alpha.\beta) = \dfrac{3}{1} = 3}

:\implies  α⁴β³ + α³β⁴

:\implies  α³β³(α + β)

:\implies  (αβ)³(α + β)

:\implies  (3)³(5)

:\implies  (27 × 5)

:\implies  135

10th Problem :

Given : α and β are the zeroes of quadratic polynomial f(t) = x² + 7x + 3

\mathsf{\implies Sum\;of\;the\;Roots\;(\alpha + \beta) = \dfrac{-7}{1} = -7}

\mathsf{\implies Product\;of\;the\;Roots\;(\alpha.\beta) = \dfrac{3}{1} = 3}

:\implies  (α - β)²

:\implies  α² + β² - 2αβ

:\implies  (α + β)² - 2αβ - 2αβ

:\implies  (α + β)² - 4αβ

:\implies  (-7)² - (4 × 3)

:\implies  49 - 12

:\implies  37


Anonymous: Osm...
Grimmjow: Thank you! :allo_happy:
Anonymous: Welcome! :hugging_face:
krishnavignesh07: thanks
Similar questions