Math, asked by 0o0o0o0o0o0, 3 months ago

find the answer for my exam preparation
lim x→0 (cosecx - cotx)

Answers

Answered by Anonymous
18

Given :-

\tt\longrightarrow{\lim_{x \rightarrow 0}\: (cosec\: x - cot\: x)}

Solution :-

As we know that

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {cosec\: x = \dfrac{1}{sin\: x}}

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {cot\: x = \dfrac{cos\: x}{sin\: x}}

So we can write

\bf\implies{\lim_{x \rightarrow 0}\: \bigg( \dfrac{1}{sin\: x} - \dfrac{cos\: x}{sin\: x} \bigg) }

\tt:\implies{\lim_{x \rightarrow 0}\: \bigg( \dfrac{1 - cos\: x}{sin\: x} \bigg)}

Now, dividing both numerator and denominator by x.

\tt:\implies{\lim_{x \rightarrow 0}\: \bigg( \dfrac{\: \: \dfrac{1 - cos\: x}{x}}{\dfrac{sin\: x}{x}} \bigg) }

We know that

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\lim_{x \rightarrow 0}\: \dfrac{1 - cos\: x}{x} = 0}

\: \: \: \: \: \: \: \: \bullet\bf\: \: \: {\lim_{x \rightarrow 0} \: \dfrac{sin\: x}{x} = 1}

\tt:\implies{\dfrac{0}{1}}

\tt:\implies{0}

Hence,

  • Limit of the given function is 0.
Answered by INSIDI0US
56

Step-by-step explanation:

 \large\bf{\underline{\underline{We\ have:-}}}

 \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf (cosec\ x\ -\ cot\ x)}

 \large\bf{\underline{\underline{Solution:-}}}

We know that:-

 \bf : \implies {cosec\ x\ =\ \dfrac{1}{sin\ x}} \\ \\ \\ \bf : \implies {cot\ x\ =\ \dfrac{cos\ x}{sin\ x}}

❏ We can write it as:-

 \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \bigg (\dfrac{1}{sin\ x}\ -\ \dfrac{cos\ x}{sin\ x} \bigg)} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \dfrac{1\ -\ cos\ x}{sin\ x}}

❏ By putting x = 0:-

 \bf : \implies {\dfrac{1\ -\ cos\ 0}{sin\ 0}} \\ \\ \\ \bf : \implies {\dfrac{1\ -\ 1}{0}} \\ \\ \\ \bf : \implies {\dfrac{0}{0}}

● Since, it is coming as 0/0.

❏ Now we will simplify it:-

 \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \dfrac{1\ -\ cos\ x}{sin\ x}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \dfrac{1\ -\ cos\ x}{sin\ x}\ \times\ \dfrac{1\ +\ cos\ x}{1\ +\ cos\ x}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \dfrac{1^2\ -\ cos^2\ x}{sin\ x\ (1\ +\ cos\ x)}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \dfrac{1\ -\ cos^2\ x}{sin\ x\ (1\ +\ cos\ x)}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \dfrac{sin^2\ x}{sin\ x\ (1\ +\ cos\ x)}} \\ \\ \\ \bf : \implies {\displaystyle \lim_{\bf x \to 0}\ \bf \dfrac{sin\ x}{(1\ +\ cos\ x)}}

❏ By putting x = 0:-

 \bf : \implies {\dfrac{sin\ 0}{(1\ +\ cos\ 0)}} \\ \\ \\ \bf : \implies {\dfrac{0}{1\ +\ 1}} \\ \\ \\ \bf : \implies {\dfrac{0}{2}} \\ \\ \\ \bf : \implies {\underline{\fbox{\pink{\bf 0.}}}}\bigstar

 \sf \therefore {\underline{Hence,\ the\ limit\ of\ the\ given\ function\ is\ \bf 0.}}

Similar questions