Math, asked by kavithanagaraju37, 10 months ago

find the answer of the following questions ​

Attachments:

Answers

Answered by Arceus02
2

Given:

a +  \frac{1}{a }  = 6

To Find:

(i) \:  \: a -  \frac{1}{a}

(ii) \:  \:  {a}^{2}  -  \frac{1}{ {a}^{2} }

Answer:

First find a² + 1/a²

 {a}  +  \frac{1}{a}  = 6

 {(a  +   \frac{1}{a} )}^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 a \frac{1}{a}

 {6}^{2}  =36 =   {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2

 {a}^{2}  +  \frac{1}{ {a}^{2} }  = 34

Now find (i)

 {(a -  \frac{1}{a} )}^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2

 {(a -  \frac{1}{a}) }^{2}  = 34 - 2 = 32

(a -  \frac{1}{a }) =  \sqrt{32}  = 4 \sqrt{2}

Now find (ii)

( {a}^{2}  -  \frac{1}{ {a}^{2} } ) = (a +  \frac{1}{a} )(a -  \frac{1}{a} )

({a}^{2}  -  \frac{1}{ {a}^{2} } ) = 6 \times 4 \sqrt{2}

( {a}^{2}  -  \frac{1}{ {a}^{2} } ) = 24 \sqrt{2}

Ans. (i) = 42 and (ii) = 242

Similar questions