Math, asked by ashwathOtamilan, 1 month ago

Find The Answer Of This Question ​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

\large\underline{\sf{To\:Find - }}

The value of a and b.

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times \dfrac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }   = a + b \sqrt{3}

We know,

\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{35  - 20 \sqrt{3} + 14 \sqrt{3}  - 24}{ {(7)}^{2} -  {(4 \sqrt{3} )}^{2}  } = a + b \sqrt{3}

\rm :\longmapsto\:\dfrac{11  - 6 \sqrt{3} }{ 49 - 48  } = a + b \sqrt{3}

\rm :\longmapsto\:\dfrac{11  - 6 \sqrt{3} }{ 1  } = a + b \sqrt{3}

\rm :\longmapsto\: \pink{11}  -  \purple{6 \sqrt{3} }= \pink{ a }+  \purple{b \sqrt{3} }

So, On comparing we get

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf{ \: a = 11}} \:  \:  \: and \:  \:  \: \boxed{ \bf{ \: b =  - 6}}

Additional Information :-

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions