Math, asked by shreeya143, 4 months ago

find the answer of this question(5x+1/5x)(5x-1/5x)​

Attachments:

Answers

Answered by Anonymous
7

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

  \\  \sf \: (5x +  \frac{1}{5x} )(5x -  \frac{1}{5x} ) \\   \\

By identity ,

 \\  \bigstar \boxed{ \bf \:(x + y)(x - y) =  {x}^{2}   -  {y}^{2} } \\  \\

Here ,

  • x = 5x
  • y = 1/5x

Putting values , we get...

 \\  \implies \sf \: ( {5x)}^{2}  - ( { \frac{1}{5x} )}^{2} \\  \\  \implies \sf \: 25 {x}^{2}   -  \frac{1}{25 {x}^{2} }  \\

 \\  \\

Hence ,

 \\   \underline{ \underline{\boxed{ \sf \:  \orange{(5x +  \frac{1}{5x} )(5x -  \frac{1}{5x} ) = 25 {x}^{2}  -  \frac{1}{25 {x}^{2} } }}}}

 \\  \\

More identities :-

  • (x+y)² = x² + y² + 2xy

  • (x-y)² = x² + y² - 2xy

  • (x+a)(x+b) = x² + (a+b)x + ab

  • (x+y)³ = x³ + 3x²y + 3xy² + y³

  • (x-y)³ = x³ - 3x²y + 3xy² - y³

shreeya143: thnx alot
Anonymous: Wlcm :) !
Similar questions