Math, asked by Jothi7605, 8 hours ago

find the answer , please give correct ans and step

Attachments:

Answers

Answered by BrainlyConqueror0901
12

\tt\blue{\underline{Answer:}}

\green{\tt\therefore New \: eqn \to9 {x}^{2}  - 28x + 3 = 0}

 \tt \green{ \underline{Given :}} \\  \tt:  \implies Eqn  \to  {3x}^{2}  - 4x + 1 = 0 \\  \\  \tt: \implies Roots \: of \: eqn =  \alpha  \: and \:  \beta  \\  \\  \tt \red{ \underline{To \: Find:}} \\  \tt:  \implies Eqn \: whose \: roots \: are \:  \frac{ { \alpha }^{2} }{ \beta }  \: and \:  \frac{ { \beta }^{2} }{ \alpha }

\tt\orange{\underline{Step-by-step\:\:explanation:}}

According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {3x}^{2}  - 4x + 1 = 0 \\  \\ \tt:  \implies  {3x}^{2}  - 3x - x + 1 = 0 \\  \\ \tt:  \implies 3x(x - 1) - 1(x -   1) = 0 \\  \\ \tt:  \implies (3x - 1)(x - 1) = 0 \\  \\ \tt:  \implies x  =  \frac{1}{3}  \: and \: 1 \\  \\   \sf\therefore  \alpha  =  \frac{1}{3}  \: and \:  \beta  = 1 \\  \\  \bold{For \: new \: roots} \\  \tt:  \implies  Sum \: of \: roots = \frac{ { \alpha }^{2} }{ \beta }  +  \frac{ { \beta }^{2} }{ \alpha }  \\  \\ \tt:  \implies  Sum \: of \: roots = \frac{ { \alpha }^{3} +  { \beta }^{3}  }{ \alpha  \beta }  \\  \\ \tt:  \implies  Sum \: of \: roots = \frac{  \bigg(\frac{1}{3} \bigg) ^{3}  +  {1}^{3}  }{ \frac{1}{3} \times 1 }  \\  \\ \tt:  \implies  Sum \: of \: roots = \frac{ \frac{1}{27} + 1 }{ \frac{1}{3} }  \\  \\ \tt:  \implies  Sum \: of \: roots = \frac{1 + 27}{27}  \times 3 \\  \\ \tt:  \implies  Sum \: of \: roots = \frac{28}{9}  \\  \\  \bold{Again :} \\  \tt:  \implies Product \: of \: roots  =  \frac{ { \alpha }^{2} }{ \beta }  \times  \frac{ { \beta }^{2} }{ \alpha }  \\  \\ \tt:  \implies Product \: of \: roots  =  \alpha  \beta  \\  \\ \tt:  \implies Product \: of \: roots  =  \frac{1}{3}  \times 1 \\  \\ \tt:  \implies Product \: of \: roots  =  \frac{1}{3}  \\  \\  \bold{For \: new \: eqn } \\  \tt:  \implies New \: eqn \to  {x}^{2}  - (Sum \: of \: roots)x + (Product \: of \: roots) = 0 \\  \\ \tt:  \implies New \: eqn \to {x}^{2}  -  \frac{28}{9}x  +  \frac{1}{3}  = 0 \\  \\  \green{\tt:  \implies New \: eqn \to9 {x}^{2}  - 28x + 3 = 0}

Answered by user0172
1

New equation = 9

hope it helps. pls thank

Similar questions