Math, asked by BazalledBlue, 1 month ago

find the answer please
prove that: ​

Attachments:

Answers

Answered by sharmapriyansu33
1

Answer:

cos²x/1-sinx/cosx

cos³x/cosx-sinx

sin³x/sinx-cosx

(cos³x/cosx-sinx)-(sin³x/cosx-sinx)

(cos³x-sin³x)/(cosx-sinx)

(cosx-sinx)(cos²x+sinx.cosx+sin²x)/(cosx-sinx)

sin²x+cos²x+sinx.cosx

1+sinx.cosx= R.H.S= proved..

Answered by KnightLyfe
42

Here, we've been asked to prove the trigonometric Identity:

\qquad\qquad\bigstar\quad\tt{\dfrac{{cos}^{2}\theta}{(1-tan\theta)}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}=1+sin\theta\times cos\theta}

From here we get,

\bullet\quad\bold{LHS}=\blue{\sf{\dfrac{{cos}^{2}\theta}{(1-tan\theta)}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}}}

\bullet\quad\bold{RHS}=\pink{\sf{1+sin\theta\times cos\theta}}

Let's start working on LHS first. \\\quad\longrightarrow\quad\tt{LHS=\blue{\dfrac{{cos}^{2}\theta}{(1-tan\theta)}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}}}

We know, that the reciprocal of cos θ times sin θ equals to tan θ. That is, \\\qquad\qquad\leadsto\tt{tan\theta=\dfrac{sin\theta}{cos\theta}}

On applying this, \\\; \; \longrightarrow\quad\tt{LHS=\dfrac{{cos}^{2}\theta}{\left(1-\dfrac{sin\theta}{cos\theta}\right)}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}}

Multiplying cos θ and 1. \\\; \; \longrightarrow\quad\tt{LHS=\dfrac{{cos}^{2}\theta}{\left(\dfrac{cos\theta-sin\theta}{cos\theta}\right)}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}} \\\; \; \longrightarrow\quad\tt{LHS=\dfrac{{cos}^{2}\theta\times cos\theta}{cos\theta-sin\theta}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}}

Performing multiplication in numerator.\\\; \; \longrightarrow\quad\tt{LHS=\dfrac{{cos}^{3}\theta}{(cos\theta-sin\theta)}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}} \\\; \; \longrightarrow\quad\tt{LHS=\dfrac{{cos}^{3}\theta-{sin}^{3}\theta}{(cos\theta-sin\theta)}}

We know, \\\qquad\qquad\leadsto\tt{{a}^{3}-{b}^{3}=(a-b)({a}^{2}+ab+{b}^{2})}

On applying the identity in numerator.\\\; \; \longrightarrow\quad\tt{LHS=\dfrac{(cos\theta-sin\theta)({cos}^{2}\theta+cos\theta.sin\theta+{sin}^{2}\theta}{(cos\theta-sin\theta)}}

Performing division. \\\; \; \longrightarrow\quad\tt{LHS=({sin}^{2}\theta+{cos}^{2}\theta+cos\theta.sin\theta)}

We know, sum of sin² θ and cos² θ equals to 1. That is, \\\qquad\qquad\leadsto\tt{{sin}^{2}\theta+{cos}^{2}\theta=1}

On applying the identity.

\; \; \longrightarrow\quad\tt{LHS=\pink{1+sin\theta.cos\theta}}

Which is equal to RHS. Hence,

\; \; \longrightarrow\quad\sf{\blue{LHS}=\pink{RHS}}

That is, \\\twoheadrightarrow\quad\underline{\boxed{\sf{\dfrac{{cos}^{2}\theta}{(1-tan\theta)}+\dfrac{{sin}^{3}\theta}{(sin\theta-cos\theta)}=1+sin\theta\times cos\theta}}}

Hence, proved!

Similar questions