Find the antiderivative of f(x) given by f(x)=4x^3-3/x^4 such that f(2)=0
Answers
Answered by
0
Cruise dancer Vishal Sajan Sajan
Answered by
2
Answer:
ɢⁱᵛᵉⁿ ᶠᵘⁿᶜᵗⁱᵒⁿ: ᶠ (ˣ) = 4ˣ3 – 6
ɴᵒʷ, ⁱⁿᵗᵉᵍʳᵃᵗᵉ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ:
∫4ˣ3 – 6 = 4(ˣ4/4)-6ˣ + ᴄ
∫4ˣ3 – 6 = ˣ4 – 6ˣ + ᴄ
ᴛʰᵘˢ, ᵗʰᵉ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᵒᶠ ᵗʰᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ғ ⁱˢ ˣ4 – 6ˣ + ᴄ, ʷʰᵉʳᵉ ᴄ ⁱˢ ᵃ ᶜᵒⁿˢᵗᵃⁿᵗ
ᴀˡˢᵒ, ᵍⁱᵛᵉⁿ ᵗʰᵃᵗ, ғ(0) = 3,
ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ˣ = 0 ⁱⁿ ᵗʰᵉ ᵒᵇᵗᵃⁱⁿᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ, ʷᵉ ᵍᵉᵗ:
(0)4 – 6(0) + ᴄ = 3ᴛʰᵉʳᵉᶠᵒʳᵉ, ᴄ = 3.
ɴᵒʷ, ˢᵘᵇˢᵗⁱᵗᵘᵗᵉ ᴄ = 3 ⁱⁿ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ
ʜᵉⁿᶜᵉ, ᵗʰᵉ ʳᵉᵠᵘⁱʳᵉᵈ ᵃⁿᵗⁱᵈᵉʳⁱᵛᵃᵗⁱᵛᵉ ᶠᵘⁿᶜᵗⁱᵒⁿ ⁱˢ ˣ4 – 6ˣ + 3
ʜᵒᵖᵉ ⁱᵗ'ˢ ʰᵉˡᵖ ᵘʰ ❤️
Similar questions