Math, asked by bhattanjali2457, 11 months ago

Find the approximate increase in the total surface area of a cone when its height remains constant and the radius increases by 2% at the time when its radius is 8 cm and the height is 6 cm.

Answers

Answered by Hamzahsan
0

Answer:

edged feast state retry tree gets dyed dry cf

Answered by shailendrachoubay456
0

Answer:

Approximate increase in the total surface area of a cone = 16.22 cm^2.

                                                                                         

Step-by-step explanation:

Since we know that the total surface area of a cone = \pi r(r+l)

we have l = \sqrt{r^{2}+h^{2}  }...........................(1)

If r = 8 cm and h = 6 cm so l =10 cm.

Initial total surface area of a cone = 3.14 x 8 (8+10)=452.16 cm^2.

Now,radius increases by 2% and height remains constant.

New radius = 8.16 cm l = 10.12 cm using (1)

Now ,the total surface area of a cone = \pi r(r+l)

                                                              = 3.14 x 8.16 (8.16 +10.12)

                                                              =468.38 cm^2

Approximate increase in the total surface area of a cone = 468.38-452.16

                                                                                              =16.22 cm^2.

Similar questions