Math, asked by siku43, 1 month ago

Find the approximate values, using differentials :
• √37
• √401

Answer should be appropriate ..!!​

Answers

Answered by samirpanchal0092
1

Answer:

put so means .•. in every point like 1 ) pair .

Attachments:
Answered by SugarCrash
23

Question :

  • Find the approximate values, using differentials : • √37 • √401

Solution :

 \longmapsto\bf Solving\:for\:\pink{\sqrt{37}}

Let y = f(x) = √x

Take x = 36 ,

\leadsto \sf x +  \Delta x = 37 \\\dashrightarrow \Delta x = 37 - x  \\\dashrightarrow \Delta x = 1

When x = 36 , then y = √36 = 6

Let dx = ∆x = 1

Now,

y = √x so that \sf\dfrac{dy}{dx} =\dfrac{1}{2\sqrt{x}}

therefore, \sf\green{\dfrac{dy}{dx} = \dfrac{1}{2\sqrt{36}} = \dfrac{1}{12}} = 0.83

\longmapsto\sf dy=\dfrac{dy}{dx}.dx

 \dashrightarrow \sf dy = \dfrac{1}{12}(1) = 0.83

\sf\implies\blue{ \Delta y = 0.83 } \quad\because\{\Delta y \sf{\:is\: approx.}= dy \}

\longmapsto\sf \pink{\sqrt{37}}

\longmapsto \sf y + \Delta y = 6 + 0.83

\dashrightarrow 6.083

Hence,

  • √37 = 6.083

╼╼╼╼╼╼╼╼╼╼╼╼

╼╼╼╼╼╼╼╼╼╼╼╼

 \longmapsto\bf Solving\:for\:\pink{\sqrt{401}}

Let y = f(x) = √x

Take x = 400 ,

\leadsto \sf x +  \Delta x = 401 \\\dashrightarrow \sf\Delta x = 401 - 400  \\\dashrightarrow \sf\Delta x = 1

When x = 400 , then y = √400 = 20

Let dx = ∆x = 1

Now,

y = √x so that \sf\dfrac{dy}{dx} =\dfrac{1}{2\sqrt{x}}

therefore, \sf\green{\dfrac{dy}{dx} = \dfrac{1}{2\sqrt{400}} = \dfrac{1}{40}} =  0.025

\longmapsto\sf dy=\dfrac{dy}{dx}.dx

\dashrightarrow \sf dy = 0.025(1) = 0.025

\implies\sf\blue{ \Delta y = 0.025 }

\quad\because \{ \Delta y \sf{\:is\: approx.}= dy \}

\longmapsto\sf \pink{\sqrt{401}}

\longmapsto \sf y + \Delta y = 20 + 0.025

\dashrightarrow 20.025

Hence,

  • √401 = 20.025
Similar questions