Math, asked by dhruvjain57, 3 months ago

find the arae of a triangle, two sides of which are 8cm and 11cm and the perimeter is 32cm .​

Answers

Answered by nitin009988
0

Answer:

if sum of two sides is 19 and perimeter is 32 then third side is 13 hence using herons formula we can get our area hope it helps you

Answered by Aritra3Kz22
1

 \large\mathfrak \pink{Solution:-}

 \underline \mathbb{GIVEN:-}

★Two sides of the triangle = 8 cm and 11 cm.

★Perimeter = 32 cm.

 \underline \mathbb{TO  \: FIND:-}

★Area of the triangle.

  \underline \mathbb{FORMULA:-}

★Sum of the 3 sides of a triangle = Perimeter.

★Area  \: of \:  the \:  triangle  =  \sqrt{s(s - a)(s - b)(s - c)}  \\   \implies \: (where \: s \: is \: semi \: perimeter \\  \: and \: a \:  ,\: b \: and \: c \: are \: sides \: of \: the \: triangle.)

★semi \: perimeter \:  =   > \frac{a + b + c}{2}  =   >  \frac{perimeter}{2} \\

  \underline \mathbb{ASSUMPTION:-}

Let, the 1st side of the triangle(a) = 8 cm

Let, the 2nd side of the triangle (b)= 11 cm

Let, the 3rd side of the triangle (c)= c cm

 \underline \mathbb{BY  \: THE  \: PROBLEM:-}

Sum of the 3 sides of a triangle = Perimeter.

(a+b+c) = 32

(8+11+c) = 32

(19+c) = 32

c = 32 - 19

(Third side) c = 13 cm

------------------------------------------------------------------------

semi \: perimeter \:  =   > \frac{a + b + c}{2}  =   >  \frac{perimeter}{2} \\  \\  \implies \: perimeter =  \frac{32}{2}   = 16 \: cm

------------------------------------------------------------------------

Area  \: of \:  the \:  triangle  =  \sqrt{s(s - a)(s - b)(s - c)}  \\   \\  \implies \: \sqrt{16 (16 - 8)(16 - 11)(16 - 13)} \\  \\  \implies \:  \sqrt{16 \times 8 \times 5 \times 3}  \\  \\ \implies \:  \sqrt{8 \times 2 \times 8 \times 5 \times 3}  \\  \\ \implies \:   8\sqrt{30} \:   {cm}^{2}

\underline \mathbb{ANSWER:-}

 \boxed{8 \sqrt{30}  {cm}^{2} }

Similar questions