Math, asked by nanu4836, 10 months ago

Find the arae of triangle A(3, 0) (7, 0) and (8, 4)

Answers

Answered by Anonymous
3

Given :

  • A ( 3 , 0 )
  • B ( 7 , 0 )
  • C ( 8 , 4 )

To Find :

  • Area of the triangle

Solution :

\large \sf \orange{Area_{triangle} = \dfrac{1}{2} \bigg[x_1(y_2 -y_2) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \bigg]} \\ \\ \sf x_1=3\: \: \:\: \:\:\:\:x_2=7\: \:\:\:\: \: \:\:\:x_3=8\\ \\\sf y_1 = 0\: \:\:\:\: \: \:\:\: y_2=0\: \:\:\:\: \: \:\:\:y_3=4  \\  \\ \sf \implies \dfrac{1}{2} \bigg[3(0 -4) + 7(4 - 0) + 8(0 - 0) \bigg] \\  \\ \sf \implies \dfrac{1}{2} \bigg[ 3( - 4) + 7(4 ) + 8(0) \bigg]  \\  \\ \sf \implies \dfrac{1}{2} \bigg[ - 12 + 28 + 0 \bigg] \\  \\ \sf \implies \dfrac{1}{2}  \times 16  \\  \\ \sf \implies8   \\  \\  \Large \underline{\bf \green{ Area \: of \: triange \: is \: 8 \:  {unit}^{2}}}

Answered by Anonymous
40

Question :

Find the area of triangle A(3, 0) (7, 0) and (8, 4).

Given :

A ( 3 , 0 )

B ( 7 , 0 )

C ( 8 , 4 )

To Find :

  • Area of the triangle

Solution :

Area of Triangle =  \frac{1}{2}( x_{1}(y_{2} -y_{2}) +x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2})

–––––––––––––

x_{1} = 3

x_{2} = 7

x_{3} = 8

y_{1} = 0

y_{2} = 0

y_{3} = 4

–––––––––––––

 =  >  \frac{1}{2} \times 3(0 - 4) + 7(4 - 0)  + 8(0 - 0)

 =  >  \frac{1}{2}  \times 3( - 4) + 7(4) + 8(0)

 =  >  \frac{1}{2}  \times  - 12 + 28 + 0

 =  >  \frac{1}{ \cancel2}  \times  \cancel16

 \huge \boxed {=  >  8}

Area of triangle is 8  \: {unit}^{2}

Similar questions