Math, asked by lopamudrasahu059, 11 months ago

find the arc length of the curve y=x^3/2-1 from x=0 to x=1​

Answers

Answered by IamIronMan0
0

Answer:

s =    \int_{0} ^{1} ( \sqrt{1 + ( \frac{dy}{dx} } )  {}^{2} dx \\ \\   \:  \:  \:  =  \int_{0} ^{1}  \sqrt{1 +  \frac{3 {x}^{2} }{2} } dx \\  \\  =  \frac{1}{ \sqrt{2} }  \int_{0} ^{1}  \sqrt{( \sqrt{2} ) {}^{2} +  {( \sqrt{3x)} }^{2}  } dx \\  \\  =  \frac{1}{ \sqrt{2} } ( \frac{x \sqrt{2 + 3 {x}^{2} } }{2}  +  \frac{2}{2}  ln(x +  \sqrt{2 + 3 {x}^{2} } )  \\  \\  =  \frac{1}{ \sqrt{2} } ( \frac{ \sqrt{5} }{2}  +  ln(1 +  \sqrt{5} )  -  ln( \sqrt{2} ) )

Similar questions