Math, asked by rizzubaig2818, 9 months ago

Find the arc length of the semicircle.
Either enter an exact answer in terms of \piπpi or use 3.143.143, point, 14 for \piπpi and enter your answer as a decimal.

Answers

Answered by AditiHegde
27

Given:

enter an exact answer in terms of \piπpi or use 3.143.143, point, 14 for \piπpi

To find:

Find the arc length of the semicircle.

Solution:

The interior angle of a circle equals 360°

Therefore, the central angle of a semicircle equals 360°/2 = 180°

The proportion of the length of the arc, x, to the circumference of the circle is equal to the proportion of the central angle to 360 degrees.

x / 2πr = 180° / 360°

x = 180° / 360° × 2πr

x = 1/2 × 2 × π × r

x = πr

Since radius value isn't given, taken "r"

Answered by kyekkowunicornsk
5

Answer:

The arc length of the semicircle is 5π units.

(Note that we could also multiply 5 by 3.14 to get 15.7 units.)

Step-by-step explanation:

We want to find the arc length of 1/2

Let's start by finding the circumference of the circle.

​ Circumference of the circle  =2πr

                                               =2πr

                                              =2π⋅5

                                              =5⋅2π

                                               =10π

The arc length is 1/2 of the circumference of the circle.=  1/2⋅10π

                                                                                           =  10/2π

                                                                                            = 5π

​  

Similar questions