Math, asked by rizzubaig2818, 10 months ago

Find the arc length of the semicircle.
Either enter an exact answer in terms of \piπpi or use 3.143.143, point, 14 for \piπpi and enter your answer as a decimal.

Answers

Answered by AditiHegde
27

Given:

enter an exact answer in terms of \piπpi or use 3.143.143, point, 14 for \piπpi

To find:

Find the arc length of the semicircle.

Solution:

The interior angle of a circle equals 360°

Therefore, the central angle of a semicircle equals 360°/2 = 180°

The proportion of the length of the arc, x, to the circumference of the circle is equal to the proportion of the central angle to 360 degrees.

x / 2πr = 180° / 360°

x = 180° / 360° × 2πr

x = 1/2 × 2 × π × r

x = πr

Since radius value isn't given, taken "r"

Answered by kyekkowunicornsk
5

Answer:

The arc length of the semicircle is 5π units.

(Note that we could also multiply 5 by 3.14 to get 15.7 units.)

Step-by-step explanation:

We want to find the arc length of 1/2

Let's start by finding the circumference of the circle.

​ Circumference of the circle  =2πr

                                               =2πr

                                              =2π⋅5

                                              =5⋅2π

                                               =10π

The arc length is 1/2 of the circumference of the circle.=  1/2⋅10π

                                                                                           =  10/2π

                                                                                            = 5π

​  

Similar questions