Math, asked by Anonymous, 1 month ago

find the are of shaded region by herons formula​

Attachments:

Answers

Answered by Hrithiqgupta
2

Answer:

1074 m2

Step-by-step explanation:

perimeter of triangle ABC

= 120 + 122 + 22 = 264m

semi perimeter

s = 264/2 = 132 m

area of triangle ABC

= √[(132(132-122)(132-120)(132-22)]

= 1320m^2

perimeter of inner triangle BOC

= 24+26+22 = 72 m

s = 72/2 = 36m

area of Triangle BOC

= √[36(36-24)(36-26)(36-22)]

= 245.92 => 246m^2 (approx)

area of shaded region

= 1320 - 246 = 1074m^2 Ans

Answered by Rubellite
8

\Large\frak{\underline{\red{Given :}}}

  • Dimensions of Triangle ABC :

AB = 120m, BC = 22m, CA = 122m.

  • Dimensions of Triangle EBC :

EB = 24m, BC = 22m, EC = 26m.

\Large\frak{\underline{\red{Need\:To\:Find :}}}

  • Area of Shaded region.

\Large\frak{\underline{\red{ Complete\:Solution:}}}

Firstly, we have to find the area of Triangle ABC.

\longrightarrow{\boxed{\sf{\orange{ Semiperimeter (s) = \dfrac{sum\:of\:all\:sides}{2}}}}}

  • Substituting the values.

\longrightarrow{\sf{ \dfrac{ 120m+122m+22m}{2}=264}}

\large\implies{\boxed{\sf{ 132}}}

\longrightarrow{\boxed{\sf{\orange{ Area_{triangle}\: (Heron's\:Formulae) = \sqrt{ s(s-a)(s-b)(s-c)}}}}}

  • Substituting the values.

\longrightarrow{\sf{ \sqrt{132(132-122)(132-120)(132-22)}}}

\longrightarrow{\sf{ \sqrt{132(10)(12)(110)}}}

  • Factorise the numbers.

\longrightarrow{\sf{ \sqrt{ 2\times 2\times 3\times 11\times 2\times 5 \times 2\times 2\times 3\times 2\times 5\times 11}}}

  • Simplify.

\longrightarrow{\sf{ 2 \times 2\times 2\times 3 \times 5\times 11 }}

\large\implies{\boxed{\sf{ 1320m^{2}}}}

Now, we need to find Area of Triangle EBC.

\longrightarrow{\boxed{\sf{\orange{ Semiperimeter (s) = \dfrac{sum\:of\:all\:sides}{2}}}}}

  • Substituting the values.

\longrightarrow{\sf{ \dfrac{ 26m+24m+22m}{2}=\dfrac{72m}{2}}}

\large\implies{\boxed{\sf{ 36m}}}

\longrightarrow{\boxed{\sf{\orange{ Area_{(triangle)}\: (Heron's\:Formulae) = \sqrt{ s(s-a)(s-b)(s-c)}}}}}

  • Substituting the values.

\longrightarrow{\sf{ \sqrt{36(36-26)(36-24)(36-22)}}}

\longrightarrow{\sf{ \sqrt{36(10)(12)(14)}}}

  • Factorise the numbers.

\longrightarrow{\sf{ \sqrt{ 2\times 2\times 3\times 3\times 2\times 5\times 2\times 2\times 3 \times 7\times 2} }}

  • Simplify.

\longrightarrow{\sf{ 2\times 2\times 2 \times 3 \sqrt{ 3\times 7\times 5} }}

\large\implies{\boxed{\sf{ 24\sqrt{105}m^{2}}}}

We should subtract Area of Triangle ABC by area of Triangle EBC to get the area of shaded region.

\longrightarrow{\sf{ 1320m^{2} - 24\sqrt{105}m^{2}}}

\Large{\boxed{\sf{\red{ 1074cm^{2}approx.}}}}

Hence, the area of shaded region will be 1074.08cm².

And we are done! :D

__________________________

Attachments:
Similar questions