Math, asked by Anonymous, 11 months ago

➡Find the area and perimeter of rectangle , where length and Wight are given as 12 and 8 Cm .

Also, find length of diagonal . ​

Answers

Answered by Anonymous
19

\large{\underline{\underline{\mathfrak{\green{\sf{Answer-}}}}}}

★ Area of rectangle = 96 cm²

★ Perimeter of rectangle = 40 cm

★ Diagonal of rectangle = 4√13 cm

\large{\underline{\underline{\mathfrak{\green{\sf{Figure-}}}}}}

\setlength{\unitlength}{2cm}\begin{picture}(16,4)\thicklines\put(8,3){\circle*{0.1}}\put(7.8,3){\large{D}}\put(7.2,2){\mathsf{\large{8cm}}}\put(8,1){\circle*{0.1}}\put(7.8,1){\large{A}}\put(9.3,0.8){\mathsf{\large{12cm}}}\put(11.1,1){\large{B}}\put(8,1){\line(1,0){3}}\put(11,1,){\circle*{0.1}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11,3){\circle*{0.1}}\put(11.1,3){\large{C}}\end{picture}

\large{\underline{\underline{\mathfrak{\green{\sf{Formula\:used-}}}}}}

\sf{Area\:of\:rectangle=Length×Width}

\sf{Perimeter\:of\:rectangle=2(Length+Width)}

\sf{Diagonal\:of\:rectangle= \sqrt{ {length}^{2} +  {width}^{2}  } }

\large{\underline{\underline{\mathfrak{\green{\sf{Explanation-}}}}}}

\begin{lgathered}\bold{Given} \begin{cases}\sf{Length=12\:cm} \\ \sf{Width=8\:cm}\end{cases}\end{lgathered}

____________________

\begin{lgathered}\bold{To\:find} \begin{cases}\sf{Area\:of\:rectangle} \\ \sf{Perimeter\:of\:rectangle}\\ \sf{Diagonal\:of\:rectangle}\end{cases}\end{lgathered}

____________________

Solution :

\sf{Area\:of\:rectangle=Length×Width}

\implies \sf{Area\:of\:rectangle=12×8}

\implies \sf{Area\:of\:rectangle=96cm^2}

\red{\sf{Perimeter\:of\:rectangle=2(Length+Width)}}

\implies \sf{Perimeter\:of\:rectangle=2(12+8)}

\implies \sf{Perimeter\:of\:rectangle=2(20)}

\implies \red{\sf{Perimeter\:of\:rectangle=40cm}}

\sf{Diagonal\:of\:rectangle= \sqrt{ {length}^{2} +  {width}^{2}  } }

\implies \sf{Diagonal\:of\:rectangle= \sqrt{ {12}^{2} +  {8}^{2}  } }

\implies \sf{Diagonal\:of\:rectangle= \sqrt{144+64} }

\implies \sf{Diagonal\:of\:rectangle=\sqrt208}

\implies \red{\sf{Diagonal\:of\:rectangle=4\sqrt13cm}}

______________________

#AnswerWithQuality

#BAL! :)

Answered by Anonymous
2

Answer:

area of rectangle= l×w

A=12×8

A=96

perimeter of the rectangle=2(l+w)

=2(12+8)

=2(20)

=40

length of the diagonal=√w²+l²

=√8²+12²

= 14.42

Step-by-step explanation:

hope it's helpful for you

please add me to brainliest and follow me

Similar questions