Math, asked by aishi2020, 9 months ago

Find the area and perimeter of the figure given above in which all corners are right angles and all measurements in centimetres

❌No Spam❌​

Attachments:

Answers

Answered by Anonymous
39

\color{green}\large\underline{\underline{To\:Find:}}

\mathtt{The\:Perimeter\:and\:Area\:of\:the\:figure}

______________________________________

\color{blue}\large\underline{\underline{Concept:}}

  • \textit{By finding the <strong>Area</strong> and <strong>Perimeter</strong> of the different rectangles}

______________________________________

\color{purple}\large\underline{\underline{We\:Know:}}

  • \mathtt{Perimeter\:of\:rectangle}

\mathrm{Perimeter =2(length + breadth)}

  • \mathtt{Area\:of\:rectangle}

\mathrm{Area =length \times breadth}

______________________________________

\color{lime}\large\underline{\underline{Solution:}}

  • \underline{\mathtt{\rightarrow Perimeter}}

\textit{Perimeter of ANLM}

 Length = 12 unit

 Breadth = 2unit

 Perimeter = 2(12 + 2) = 28 unit

______________________________________

\textit{Perimeter of NBCD}

 Length =  5 unit

 Breadth = 2 unit

 Perimeter = 2(5 + 2) = 14 unit

______________________________________

\textit{Perimeter of IJKL}

 Length =  5 unit

 Breadth = 2 unit

 Perimeter = 2(5 + 2) = 14 unit

______________________________________

\textit{Perimeter of EFGH}

 Length =  3 unit

 Breadth = 2 unit

 Perimeter = 2(3 + 2) = 10 unit

______________________________________

\therefore Perimeter\:the\:figure = ANLM + NBCD + IJKL + EFGH

\Rightarrow (28 + 14 + 14 + 10) units

\Rightarrow 66 units

______________________________________

  • \underline{\mathtt{\rightarrow Area}}

\textit{Area of ANLM}

 Length = 12 unit

 Breadth = 2unit

 Area = 12 \times 2 = 24 unit^{2}

______________________________________

\textit{Area of NBCD}

 Length = 5 unit

 Breadth = 2unit

 Area = 5 \times 2 = 10 unit^{2}

______________________________________

\textit{Area of IJKL}

 Length = 5 unit

 Breadth = 2unit

 Area = 5 \times 2 = 10 unit^{2}

______________________________________

\textit{Area of EFGH}

 Length = 3 unit

 Breadth = 2unit

 Area = 3 \times 2 = 6 unit^{2}

______________________________________

\therefore Area\:the\:figure = ANLM + NBCD + IJKL + EFGH

\Rightarrow (24 + 10 + 10 + 6) unit^{2}

\Rightarrow 50 unit^{2}

Attachments:
Answered by aishi45
22

Given,

AK = 12 cm

BD= FG= JK= 2cm

BD= NC, FG=EH, JK= IL

Therefore, CE+HI = (12-6) = 6cm

perimeter of the quadrilateral= Sum of the sides

There fore, Perimeter = 12+7+7+5+5+2+2+2+3+3+6

Answer: 54 cm

Attachments:
Similar questions