Find the area and the perimeter of the shaded region in figurer
The diamensions are in centimetres
Answers
- Radius of Big Semicircle(R) = 14cm
- Radius of Small semicircle(r) = 14/2= 7cm
We have to find the perimeter and the area of shaded region of the shaded region
First find the Area of Shaded region :-
Now the perimeter of shaded region :-
Perimeter= Circumference of big semicircle + Circumference of small semicircle + Radius of big semi Circle.
Answer:
\underline{\large{\sf\ \ \ \ \ SOLUTION:-\ \ \ \ }}
SOLUTION:−
Radius of Big Semicircle(R) = 14cm
Radius of Small semicircle(r) = 14/2= 7cm
We have to find the perimeter and the area of shaded region of the shaded region
First find the Area of Shaded region :-
\begin{gathered}\begin{gathered}\star\sf\ \ Area\ of\ shaded\ region = \big(Area\ of\ Big_{Semicircle}\big)-\big(Area\ of\ Small_{semicircle}\big)\\ \\ \\ \star\sf\ \ Area\ of\ semicircle= \dfrac{\pi r^2}{2}\\ \\ \\ :\implies\sf\ Area\ of\ shaded\ region = \dfrac{\pi R^2}{2}-\dfrac{\pi r^2}{2}\\ \\ \\ :\implies\sf\ Area\ = \dfrac{\pi }{2}\Big(R^2-r^2\Big)\\ \\ \\:\implies\sf\ Area\ = \dfrac{\cancel{22}}{7\times \cancel{2}}\times \Big\{(R+r)(R-r)\Big\}\\ \\ \\ :\implies\sf \ Area\ = \dfrac{11}{7}\times \Big\{(14+7)(14-7)\Big\}\\ \\ \\ :\implies\sf\ Area\ = \dfrac{11}{\not{7}}\times 21\times \not{7}\\ \\ \\ :\implies\sf\ Area\ = 11\times 21\\ \\ \\ :\implies\sf\ Area\ = 231cm^2\\ \\ \\ \underline{\pink{\sf \ Area\ of\ shaded\ Region= 231cm^2}}\end{gathered}\end{gathered}
⋆ Area of shaded region=(Area of Big
Semicircle
)−(Area of Small
semicircle
)
⋆ Area of semicircle=
2
πr
2
:⟹ Area of shaded region=
2
πR
2
−
2
πr
2
:⟹ Area =
2
π
(R
2
−r
2
)
:⟹ Area =
7×
2
22
×{(R+r)(R−r)}
:⟹ Area =
7
11
×{(14+7)(14−7)}
:⟹ Area =
7
11
×21×
7
:⟹ Area =11×21
:⟹ Area =231cm
2
Area of shaded Region=231cm
2
Now the perimeter of shaded region :-
Perimeter= Circumference of big semicircle + Circumference of small semicircle + Radius of big semi Circle.
\begin{gathered}\begin{gathered}\bigstar\sf\ \ \ Perimeter\ of\ semicircle = \dfrac{2\pi r}{2}\\ \\ \\ \dashrightarrow\sf\ Perimeter\ of\ semicircle= \pi r\\ \\ \\ :\implies\sf\ Perimeter= (\pi R+ \pi r)+ R\\ \\ \\ :\implies\sf\ \ Perimeter= \pi(R+r)+R\\ \\ \\ :\implies\sf\ \ Perimeter= \dfrac{22}{7}\times \Big(14+7\Big)+ 14\\ \\ \\ :\implies\sf\ \ Perimeter= \Bigg\{\dfrac{22}{\cancel{7}}\times \cancel{21} \Bigg\}+14\\ \\ \\ :\implies\sf\ \ Perimeter= \big(22\times 3\big)+14\\ \\ \\ :\implies\sf\ \ Perimeter= 66+14\\ \\ \\ :\implies\sf\ Perimeter= 80cm\\ \\ \\ \underline{\bigstar{\textsf{\textbf{Perimeter\ of\ shaded\ region= 80cm}}}}\end{gathered}\end{gathered}
★ Perimeter of semicircle=
2
2πr
⇢ Perimeter of semicircle=πr
:⟹ Perimeter=(πR+πr)+R
:⟹ Perimeter=π(R+r)+R
:⟹ Perimeter=
7
22
×(14+7)+14
:⟹ Perimeter={
7
22
×
21
}+14
:⟹ Perimeter=(22×3)+14
:⟹ Perimeter=66+14
:⟹ Perimeter=80cm
★Perimeter of shaded region= 80cm