Math, asked by asfsdfdsfg12134pu, 3 days ago

Find the area between the cardioids r = 2a(1−cos θ) and r = 2a(1+cos θ).
Suppose the area lying inside the cardioids is revolved about the initial
line θ = 0. Find the volume of the solid thus generated.

Answers

Answered by azamzaid2007
0

Answer:

The cardioid r=a(1+cosθ) is ABCOB  

A and the cardioid  r=a(1−cosθ) is OC  

BA  

B  

O

Both the cardioids are symmetrical about the initial line OX and intersect at B and B  

 

∴ Required Area=2Area OC  

BCO

                    =2[areaOC  

BO+areaOBCO]

                   =2[(∫  

0

2

π

 

 

2

1

r  

2

dθ)  

r=a(1−cosθ)

+∫  

2

π

 

π

((1+cosθ)  

2

dθ)  

r=a(1+cosθ)

]

             =a  

2

[∫  

0

2

π

 

(1−2cosθ+cos  

2

θ)dθ+∫  

2

π

 

π

(1+2cosθ+cos  

2

θ)dθ]

=a  

2

[∫  

0

π

(1+cos  

2

θ)dθ−2∫  

0

2

π

 

cosθdθ+2∫  

2

π

 

π

cosθdθ]

=a  

2

[∫  

0

π

(1+  

2

1+cos2θ

)dθ−2∣sinθ∣  

0

2

π

 

+2∣sinθ∣  

2

π

 

π

]

=a  

2

[  

 

2

3

θ+  

4

sin2θ

 

 

0

π

−2(1−0)+2(0−1)]

=(  

2

−4)a  

2

 

solution

Step-by-step explanation:

Similar questions