Math, asked by maheshtalpada412, 1 day ago

Find the area between the curves \rm {x}^{2} + {y}^{2} = 16 and \rm {(x + 4)}^{2} + {y}^{2} = 16.

 \\ \rule{300pt}{0.1pt}

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given curves are

\rm \:  {x}^{2} +  {y}^{2} = 16 \\

and

\rm \:  {(x + 4)}^{2} +  {y}^{2} = 16 \\

Step :- 1 Point of intersection

\rm \:  {x}^{2} +  {y}^{2}  =  {(x + 4)}^{2}  +  {y}^{2}  \\

\rm \:  {x}^{2} =  {x}^{2} + 16 + 8x

\rm \: 8x + 16 = 0 \\

\rm \: 8x =  - 16 \\

\rm\implies \:x =   -  2 \\

So,

\rm \:  {( - 2)}^{2} +  {y}^{2} = 16 \\

\rm \: 4+  {y}^{2} = 16 \\

\rm \: {y}^{2} = 16 - 4 \\

\rm \: {y}^{2} = 12 \\

\rm\implies \:y \:  =  \:  \pm \: 2 \sqrt{3}  \\

Hᴇɴᴄᴇ,

➢ Pair of points of intersecting of two given curves are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 2 & \sf 2 \sqrt{3}  \\ \\ \sf  - 2 & \sf  - 2 \sqrt{3}  \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

\rm \:  {x}^{2} +  {y}^{2} = 16 \\

represents a circle having center (0, 0) and radius 4 units

Let

\rm \: y_1 =  \sqrt{16 -  {x}^{2} }  \\

And

\rm \:  {(x + 4)}^{2} +  {y}^{2} = 16 \\

represents a circle having center (- 4, 0) and radius 4 units.

\rm \: y_2 =  \sqrt{16 -  {(x + 4)}^{2} }  \\

Step :- 3 Required Area

So, required area between these two curves with respect to x - axis is given by

\rm \:  =2\bigg( \displaystyle\int_{ - 4}^{ - 2}\rm y_1 \: dx \: +  \displaystyle\int_{ - 2}^{0}\rm y_2 \: dx\bigg)

Now, Consider first

\displaystyle\int_{ - 2}^{0}\rm y_2 \: dx \\

\rm \:  = \displaystyle\int_{ -2}^{0}\rm  \sqrt{16 -  {(x + 4)}^{2} }  \: dx \\

\rm \:  = \displaystyle\int_{ - 2}^{0}\rm  \sqrt{ {4}^{2}  -  {(x + 4)}^{2} }  \: dx \\

\rm \:  = \bigg[\dfrac{x + 4}{2} \sqrt{16 -  {(x + 4)}^{2} }  + \dfrac{16}{2} {sin}^{ - 1} \dfrac{x + 4}{4}\bigg]_{ - 2}^{0} \\

\rm \:  = 4\pi - \bigg[\dfrac{ - 2 + 4}{2} \sqrt{16 -  {( - 2 + 4)}^{2} }  + 8{sin}^{ - 1} \dfrac{ - 2 + 4}{4} - 0 - 0\bigg] \\

\rm \:  =4\pi-  \sqrt{16 -  4}+ 8{sin}^{ - 1} \dfrac{1}{2} \\

\rm \:  = 4\pi - \sqrt{12}-8 \times \dfrac{\pi}{6} \\

\rm \:  = -2 \sqrt{3}+\dfrac{8\pi}{3} \: sq. \: units \\

Now, Consider

\rm \:    \displaystyle\int_{ - 4}^{-2}\rm y_1 \: dx \\

\rm \:  = \displaystyle\int_{ - 4}^{-2}\rm  \sqrt{16 -  {x}^{2} }  \: dx \\

\rm \:  = \displaystyle\int_{ - 4}^{-2}\rm  \sqrt{ {4}^{2}  -  {x}^{2} }  \: dx \\

\rm \:  =\rm \: \bigg[ \dfrac{x}{2} \sqrt{16 -  {x}^{2} } +  \dfrac{16}{2} {sin}^{ - 1} \dfrac{x}{4}\bigg]_{ - 4}^{-2} \\

\rm \:  =\rm \: \bigg[ \dfrac{ - 2}{2} \sqrt{16 - 4 } +  8 {sin}^{ - 1} \dfrac{ - 2}{4}\bigg] - (-4\pi )\\

\rm \:  =\rm \: 4\pi - \sqrt{12 } +  8 {sin}^{  - 1} \dfrac{1}{2}\\

\rm \:  = 4\pi -2 \sqrt{3} - 8 \times  \frac{\pi}{6}  \\

\rm \:  = - 2 \sqrt{3} + \frac{8\pi}{3} \: sq. \: units \\

So, on substituting these values in

\rm \:  =2\bigg( \displaystyle\int_{ - 4}^{ - 2}\rm y_1 \: dx \: +  \displaystyle\int_{ - 2}^{0}\rm y_2 \: dx\bigg)

\rm \:  =2 \bigg(-2 \sqrt{3} + \frac{8\pi}{3} - 2 \sqrt{3} + \frac{8\pi}{3}\bigg) \: sq. \: units \\

\rm \:  =2 \bigg(-4\sqrt{3} + \frac{16\pi}{3}\bigg) \: sq. \: units \\

\rm \:  =-8\sqrt{3} + \frac{32\pi}{3} \: sq. \: units \\

Hence,

\rm\implies \:\rm \: Required\:Area =-8\sqrt{3} + \frac{32\pi}{3} \: sq. \: units \\

Attachments:
Answered by anushkasengupta786
10

Answer:

Ruko thodi der....................

Similar questions