Math, asked by Anonymous, 1 month ago

Find the area between the curves y = x² + 5 and y = x³ and the lines x = 1 and x = 2​

Answers

Answered by ItsMagician
111

consider the given curves

\tt y = x^{3}

\tt y = x^{2}

Area bounded the these curves

\tt =  |f^{x _2  } _ {x^{1}}( {y}^{2}  -  {y}^{1} dx   |  \\   \\

\tt | f^{2} _ {1} (x^{2}-x{3}) do | \\ \\

\tt | [ \frac{ x^{3} }{ x } ^{2} _{1} - ( \frac{ x^{4} }{ 4 }) ^{2} _{1}  | \\ \\

\tt | \frac{ 1 }{3 } (8-1) - \frac{ 1}{4} ( 16-1 ) | \\ \\

\tt | \frac{ 7 }{3} = \frac{15}{4} | \\ \\

\tt | \frac{ 28-45 }{12} | \\ \\

\tt \frac{ 17 }{12} ^{2} units \\ \\

Hence, the area bounded by these curves is

‏‏‎

‏‏‎

\LARGE{\pmb{\frak {\frac{17 }{12} ^{2} units }}}

‏‏‎ ‎

Attachments:
Answered by mathdude500
29

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\:y =  {x}^{2} + 5

and

\rm :\longmapsto\:y =  {x}^{3}

with boundary conditions,

\rm :\longmapsto\:x = 1 \:  \: and \:  \: x = 2

Let assume that,

\rm :\longmapsto\:y_1 =  {x}^{2} + 5

and

\rm :\longmapsto\:y_2 =  {x}^{3}

So, required area between the curves is given by

\rm \:  =  \:\displaystyle\int_1^2\rm (y_1 - y_2) \: dx

\rm \:  =  \:\displaystyle\int_1^2\rm ( {x}^{2} + 5  - {x}^{3} ) \: dx

We know,

 \red{\boxed{ \rm{ \: \displaystyle\int \:  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \:  \: }}}

So, using this identity, we get

\rm \:  =  \:\bigg[\dfrac{ {x}^{3} }{3}  + 5x - \dfrac{ {x}^{4} }{4} \bigg]_1^2\rm

\rm \:  =  \:\dfrac{8 - 1}{3}  + 5(2 - 1) - \dfrac{16 - 1}{4}

\rm \:  =  \:\dfrac{7}{3}  + 5 - \dfrac{15}{4}

\rm \:  =  \:\dfrac{28 + 60 - 45}{12}

\rm \:  =  \:\dfrac{43}{12}   \: square \: units

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Attachments:
Similar questions