Math, asked by madhav5245, 10 days ago

Find the area bounded between

 {x}^{2}  +  {y}^{2}  =  {d}^{2}  \: and \: x + y = d

Please don't copy and don't spam​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  =  {d}^{2}  -  -  -  - (1)

and

\rm :\longmapsto\:x + y = d -  -  -  - (2)

Step :- 1 Point of intersection

From equation (2), we have

\rm :\longmapsto\:y = d - x

Substituting this value of y in equation (1), we get

\rm :\longmapsto\: {x}^{2} +  {(d - x)}^{2}  =  {d}^{2}

\rm :\longmapsto\: {x}^{2} +   {d}^{2}   +  {x}^{2}   - 2dx=  {d}^{2}

\rm :\longmapsto\: 2{x}^{2}   - 2dx=  0

\rm :\longmapsto\:2x(x - d) = 0

\bf\implies \:x = 0 \:  \:  \: or \:  \:  \: x = d

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf d \\ \\ \sf d & \sf 0 \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

The curve

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  =  {d}^{2}

represents the equation of circle whose center is (0, 0) and radius d units.

[ See the attachment ]

Step :- 3 Required area bounded between Curves

Required area bounded between curves is

\rm \:  =  \:\displaystyle\int_{0}^{d}(y_{circle} \:  -  \: y_{line}) \: dx

\rm \:  =  \:\displaystyle\int_{0}^{d}\bigg[ \sqrt{ {d}^{2} -  {x}^{2}}  - (d - x) \bigg] \: dx

\rm \:  =  \:\displaystyle\int_{0}^{d}\bigg[ \sqrt{ {d}^{2} -  {x}^{2}}  - d  + x \bigg] \: dx

As we know that,

\boxed{ \tt{ \: \displaystyle\int  \sqrt{ {a}^{2}  -  {x}^{2} } \: dx \:  =  \: \frac{x}{2}\sqrt{ {a}^{2}  -  {x}^{2} } +  \frac{ {a}^{2} }{2}  {sin}^{ - 1} \frac{x}{a}  + c}}

So, using this, we get

\rm \:  =  \:\bigg[\dfrac{x}{2}\sqrt{ {d}^{2}-{x}^{2} } + \dfrac{ {d}^{2} }{2} {sin}^{ - 1}\dfrac{x}{d} - dx + \dfrac{ {x}^{2} }{2} \bigg]_{0}^{d}

\rm \:  =  \:\bigg[\dfrac{d}{2}\sqrt{ {d}^{2}-{d}^{2} } + \dfrac{ {d}^{2} }{2} {sin}^{ - 1}\dfrac{d}{d} -  {d}^{2}  + \dfrac{ {d}^{2} }{2} \bigg] - 0

\rm \:  =  \: \dfrac{ {d}^{2} }{2} {sin}^{ - 1}1 - \dfrac{ {d}^{2} }{2}

\rm \:  =  \: \dfrac{ {d}^{2} }{2} \times \dfrac{\pi}{2}  - \dfrac{ {d}^{2} }{2}

\rm \:  =  \: \dfrac{ {d}^{2} }{2}\bigg[ \dfrac{\pi}{2}  -1\bigg]

\rm \:  =  \: \dfrac{ {d}^{2} }{2}\bigg[ \dfrac{\pi - 2}{2}\bigg]

\rm \:  =  \: \dfrac{ {d}^{2}(\pi - 2) }{4} \: square \: units

Attachments:
Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  =  {d}^{2}  -  -  -  - (1)

and

\rm :\longmapsto\:x + y = d -  -  -  - (2)

Step :- 1 Point of intersection

From equation (2), we have

\rm :\longmapsto\:y = d - x

Substituting this value of y in equation (1), we get

\rm :\longmapsto\: {x}^{2} +  {(d - x)}^{2}  =  {d}^{2}

\rm :\longmapsto\: {x}^{2} +   {d}^{2}   +  {x}^{2}   - 2dx=  {d}^{2}

\rm :\longmapsto\: 2{x}^{2}   - 2dx=  0

\rm :\longmapsto\:2x(x - d) = 0

\bf\implies \:x = 0 \:  \:  \: or \:  \:  \: x = d

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf d \\ \\ \sf d & \sf 0 \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

The curve

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  =  {d}^{2}

represents the equation of circle whose center is (0, 0) and radius d units.

[ See the attachment ]

Step :- 3 Required area bounded between Curves

Required area bounded between curves is

\rm \:  =  \:\displaystyle\int_{0}^{d}(y_{circle} \:  -  \: y_{line}) \: dx

\rm \:  =  \:\displaystyle\int_{0}^{d}\bigg[ \sqrt{ {d}^{2} -  {x}^{2}}  - (d - x) \bigg] \: dx

\rm \:  =  \:\displaystyle\int_{0}^{d}\bigg[ \sqrt{ {d}^{2} -  {x}^{2}}  - d  + x \bigg] \: dx

As we know that,

\boxed{ \tt{ \: \displaystyle\int  \sqrt{ {a}^{2}  -  {x}^{2} } \: dx \:  =  \: \frac{x}{2}\sqrt{ {a}^{2}  -  {x}^{2} } +  \frac{ {a}^{2} }{2}  {sin}^{ - 1} \frac{x}{a}  + c}}

So, using this, we get

\rm \:  =  \:\bigg[\dfrac{x}{2}\sqrt{ {d}^{2}-{x}^{2} } + \dfrac{ {d}^{2} }{2} {sin}^{ - 1}\dfrac{x}{d} - dx + \dfrac{ {x}^{2} }{2} \bigg]_{0}^{d}

\rm \:  =  \:\bigg[\dfrac{d}{2}\sqrt{ {d}^{2}-{d}^{2} } + \dfrac{ {d}^{2} }{2} {sin}^{ - 1}\dfrac{d}{d} -  {d}^{2}  + \dfrac{ {d}^{2} }{2} \bigg] - 0

\rm \:  =  \: \dfrac{ {d}^{2} }{2} {sin}^{ - 1}1 - \dfrac{ {d}^{2} }{2}

\rm \:  =  \: \dfrac{ {d}^{2} }{2} \times \dfrac{\pi}{2}  - \dfrac{ {d}^{2} }{2}

\rm \:  =  \: \dfrac{ {d}^{2} }{2}\bigg[ \dfrac{\pi}{2}  -1\bigg]

\rm \:  =  \: \dfrac{ {d}^{2} }{2}\bigg[ \dfrac{\pi - 2}{2}\bigg]

\rm \:  =  \: \dfrac{ {d}^{2}(\pi - 2) }{4} \: square \: units

Attachments:
Similar questions