Math, asked by papafairy143, 15 hours ago

Find the area bounded between the curves

 {x}^{2}  = y \:  \: and \:  \:  {y}^{2}  = x

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\: {y}^{2} = x -  -  - (1)

and

\rm :\longmapsto\: {x}^{2} = y-  -  - (2)

Let's first find the point of intersection of two curves.

Substituting the value of y from equation (2) to equation (1), we get

\rm :\longmapsto\: {( {x}^{2}) }^{2}  = x

\rm :\longmapsto\:  {x}^{4}   = x

\rm :\longmapsto\:  {x}^{4} - x = 0

\rm :\longmapsto\:  x({x}^{3} - 1) = 0

\bf\implies \:x = 0 \:  \: or \:  \: x = 1

Hᴇɴᴄᴇ,

➢ Pair of points of intersection of two curves are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf 1 \end{array}} \\ \end{gathered} \\

Curve Sketching :-

= x represented the right handed parabola having vertex at the origin and axis along x - axis.

and

x² = y represented the upper parabola having vertex at the origin and axis along y - axis.

[ See the attachment ]

Required Area

So, required area bounded between the two curves with respect to x - axis is given by

 \purple{\rm \:  =  \:\displaystyle\int_{0}^{1}\rm (y_1 - y_2) \: dx}

 \purple{\rm \:  =  \:\displaystyle\int_{0}^{1}\rm ( \sqrt{x}  - {x}^{2} ) \: dx}

\rm \:  =  \: \dfrac{ {\bigg(x\bigg) }^{\dfrac{1}{2}  + 1} }{\dfrac{1}{2}  + 1} - \dfrac{ {x}^{2 + 1} }{2 + 1} \bigg]_{0}^{1}

\rm \:  =  \: \dfrac{ {\bigg(x\bigg) }^{\dfrac{3}{2}} }{\dfrac{3}{2}} - \dfrac{ {x}^{3} }{3} \bigg]_{0}^{1} \\

\rm \:  =  \: \dfrac{2}{3}  - \dfrac{1}{3}  - 0

\rm \:  =  \: \dfrac{2 - 1}{3}

\rm \:  =  \: \dfrac{1}{3}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Answered by XxitzZBrainlyStarxX
6

Question:-

Find the area bounded between the curves x² = y and y² = x.

Given:-

  • The curves are x² = y and y² = x.

To Find:-

  • The area bounded between the curves.

Solution:-

Curves are x² = y and y² = x. i.e. y = x.

Clearly the given curves represents parabola in standard form.

The rough sketch of the parabolas is shown in figure:

For points of intersection y² = x.

 \sf \large ⇒y =  \sqrt{x}

 \sf \large \therefore \: x {}^{2}  =  \sqrt{x}

 \sf \large ⇒x {}^{4}  = x

 \sf \large ⇒x(x {}^{3}  - 1) = 0

 \large  \red {⇒} \sf \large  { \boxed { \sf \red{x = 0,</p><p>1}}}

   \large\red{⇒} \sf \large { \boxed{ \sf \red {y = 0,</p><p>1 }}}

Point of intersection of these two parabolas are O(0,0) and A (1,1).

Now,

 \sf \large y {}^{2}  = x \: or \: y =  \sqrt{x }  = f(x) \: (say) \\  \sf \large y = x {}^{2}  = g(x) \: (say)

 \sf \large where \: f(x) &gt; g(x) \: in \: [0,1]

Required area of shaded region:

 \sf   \large  \int ^1 _{0} \bigg[f(x) - g(x)dx =  \int ^1_{0} \bigg( \sqrt{x} - x {}^{2}   \bigg) dx

 \sf \large =  \bigg[ \frac{2}{3}  \: x {}^{3/2 }  -  \frac{x {}^{3} }{3}  \bigg]^1_</p><p>{0}

 \sf \large  =  \frac{2}{3}  -  \frac{1}{3}  =  \frac{1}{3}  \: sq.units

Answer:-

 \sf    \blue{ \therefore \: The \:  Area \:  of \:  bounded  \: between \:  the} \\  \sf \blue{ \sf curves \:  x² = y and \:  y² = x =  \frac{1}{3} \: sq.units. }

[Refer to the above graph given]

Hope you have satisfied.

Attachments:
Similar questions