Math, asked by Anonymous, 11 months ago

Find the area bounded between the curves Y=xsquare ,Y=xcube

Answers

Answered by shadowsabers03
49

We need to find area bounded between the curves,

  • y=x^2

and,

  • y=x^3

Assume,

\longrightarrow x^3\leq x^2

\longrightarrow x^3-x^2\leq0

\longrightarrow x^2(x-1)\leq0

Performing wavy curve method,

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){60}}\multiput(20,0)(20,0){2}{\circle*{1}}\put(19,-5){$0$}\put(39,-5){$1$}\qbezier(40,0)(50,20)(60,10)\qbezier(30,-10)(35,-10)(40,0)\qbezier(25,-5)(27.5,-10)(30,-10)\qbezier(20,0)(22.5,-0)(25,-5)\qbezier(0,-10)(10,0)(20,0)\end{picture}

Then we get,

\longrightarrow x\in\left(-\infty,\ 1]

But since x^2>0 and x^3<0 for x<0, no area is bounded by the two curves for x<0 as they diverge there.

So we consider,

\longrightarrow x\in[0,\ 1]

Hence the area bounded will be,

\displaystyle\longrightarrow A=\int\limits_0^1(x^2-x^3)\ dx

\displaystyle\longrightarrow A=\dfrac{1}{3}\left[x^3\right]_0^1-\dfrac{1}{4}\left[x^4\right]_0^1

\displaystyle\longrightarrow A=\dfrac{1}{3}-\dfrac{1}{4}

\displaystyle\longrightarrow\underline{\underline{A=\dfrac{1}{12}}}

Answered by mathdude500
2

☆ We have to find the area bounded between the curves

\tt \:y \:  =  \:  {x}^{2}  \: and \: y \:  =  \:  {x}^{3}

\tt \: \:  \:  \:  \: y \:  =  \:  {x}^{2}  -  -  - (1)

\tt \: \:  \:  \:  \:  \: y \:  =  \:  {x}^{3}  -  -  - (2)

\large\underline{\bold{❥︎Step :- 1 }}

☆ Point of intersection of (1) and (2)

\tt \: {x}^{2}  =  {x}^{2}

\tt \implies \:  {x}^{3}  \:  -  \:  {x}^{2}  = 0

\tt \implies \:  {x}^{2} (x - 1) = 0

\tt \implies \: x \:  =  \: 0 \: or \: x \:  =  \: 1

➢ So, point of intersection of curve (1) and (2) are given below

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf 1 \end{array}} \\ \end{gathered}

\large\underline{\bold{❥︎Step :- 2 }}

Curve sketching :-

Please check the attachment for area.

\tt \:Blue \:  indicates  \: y \:  =  \:  {x}^{3}  \\ \tt \: \:\: Red \:  indicates \: y \:  =  \:  {x}^{2}  \:  \:  \:  \:

\large\underline{\bold{❥︎Step :- 3 }}

\tt \:Required  \: Area \:  = \int_0^1x^2dx \:  -  \: \int_0^1x^3dx

\tt \implies \:  =  \bigg[ \dfrac{ {x}^{3} }{3}  \bigg]_0^1 \:  -  \: \bigg[ \dfrac{ {x}^{4} }{4}  \bigg]_0^1

\tt \implies \:  = \dfrac{1}{3}  - \dfrac{1}{4}

\tt \implies \:  =  \: \dfrac{1}{12}  \: sq. \: units

Attachments:
Similar questions