Math, asked by avnanjan15, 1 year ago

Find the area bounded between the curves y²-1=2x and x=0.

Attachments:

Answers

Answered by anushisharma
3
y
y ^{2}  - 1 = 2x \\ y ^{2}  - 1 = 2 \times 0 \\ y {}^{2}  - 1 = 0
y=±1
Answered by shadowsabers03
67

We need to find area bounded between,

  • x=\dfrac{y^2-1}{2}

and,

  • x=0

Assume,

\longrightarrow \dfrac{y^2-1}{2}\leq0

\longrightarrow y^2\leq1

\longrightarrow y\in[-1,\ 1]

Hence the area bounded will be,

\displaystyle\longrightarrow A=\int\limits_{-1}^1\left(0-\dfrac{y^2-1}{2}\right)\ dy

\displaystyle\longrightarrow A=\int\limits_{-1}^1\left(\dfrac{1}{2}-\dfrac{y^2}{2}\right)\ dy

\displaystyle\longrightarrow A=\dfrac{1}{2}\big[y\big]_{-1}^1-\dfrac{1}{6}\left[y^3\right]_{-1}^1

\displaystyle\longrightarrow\underline{\underline{A=\dfrac{2}{3}}}

Similar questions