Math, asked by noshithayana1204, 5 hours ago

Find the area bounded between the curves y²= 4ax and x²= 4by

Answers

Answered by ss0228896
1

Answer

16ab is the answer

_____ square units

3

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

The given curves are

\rm :\longmapsto\: {y}^{2}  = 4ax -  -  - (1)

and

\rm :\longmapsto\: {x}^{2} = 4by -  -  -  - (2) \:

Let first find the point of intersection of two curves.

From equation (2), we have

\rm :\longmapsto\: {x}^{2} = 4by

On squaring both sides, we get

\rm :\longmapsto\: {x}^{4} = 16 {b}^{2} {y}^{2}

can be rewritten as using equation (1),

\rm :\longmapsto\: {x}^{4} = 16 {b}^{2} (4ax)

\rm :\longmapsto\: {x}^{4} - 64 {ab}^{2}x = 0

\rm :\longmapsto\:x( {x}^{3} - 64 {ab}^{2}) = 0

\rm \implies\:x = 0 \:  \: or \:  {x}^{3} = 64 {ab}^{2}

\rm \implies\:x = 0 \:  \: or \:  x = 4( {ab}^{2})^{ \frac{1}{3} }

See the attachment for the required area to be evaluated.

Now, from equation (1)

\rm :\longmapsto\: {y}^{2} = 4ax

\red{\rm :\longmapsto\:y_1 = 2 \sqrt{a}  \sqrt{x} }

And from equation (2), we have

\rm :\longmapsto\: {x}^{2} = 4by

\red{\rm :\longmapsto\:y_2 = \dfrac{ {x}^{2} }{4b}}

So, required area between two curves is given by

\rm \:  =  \: \displaystyle\int_0^{ 4( {ab}^{2})^{ \frac{1}{3}}}\bigg[y_1 - y_2\bigg] \: dx

\rm \:  =  \: \displaystyle\int_0^{ 4( {ab}^{2})^{ \frac{1}{3}}}\bigg[2 \sqrt{a} \sqrt{x}   -  \frac{ {x}^{2} }{4b} \bigg] \: dx

\rm \:  =  \: 2 \sqrt{a} \times \dfrac{2}{3} \bigg[ {x}^{ \frac{3}{2} }  \bigg] _0^{ 4( {ab}^{2})^{ \frac{1}{3} } } - \dfrac{1}{4b}\bigg[\dfrac{ {x}^{3} }{3} \bigg]_0^{ 4( {ab}^{2})^{ \frac{1}{3} } }

\rm \:  =  \: \dfrac{32\sqrt{a} }{3} \sqrt{a {b}^{2} } \:  -  \dfrac{1}{12b}  \times 64 {( {ab}^{2} )}

\rm \:  =  \: \dfrac{32ab}{3} - \dfrac{16ab}{3}

\rm \:  =  \:  \dfrac{16ab}{3}  \: sq. \: units

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Similar questions