Math, asked by vaishnavitibe22, 2 months ago

find the area bounded both the parabola y^2 = 9x and x^2 = 9y​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have, the upward parabola: x²=9y

Right-handed parabola: y²=9x

Their point of intersection is  (0,0) \: \& \: (9,9)

Required area

\int^{9}_{0}  \bigg( 3 \sqrt{x}  -  \frac{ {x}^{2} }{9} \bigg) dx\\

  =   \bigg[3  \frac{ {x}^{ \frac{3}{2} } }{ \frac{3}{2} }   -  \frac{ {x}^{3} }{9.3} \bigg] ^{9} _{0}  \\

  =   \bigg[2   {x}^{ \frac{3}{2} }    -  \frac{ {x}^{3} }{27} \bigg] ^{9} _{0}  \\

  =  2  . {9}^{ \frac{3}{2} }    -  \frac{ {9}^{3} }{27}  \\

  =  54   -  \frac{ 9  \times 3 \times 3 \times 9 }{27}  \\

  =  54   -  27  \\

  =  27  sq \: units\\

Similar questions