Math, asked by johnmomo8, 3 months ago

Find the area bounded by the curve 2y=-x+8, x axis and the ordinate x=2 and x=4

Answers

Answered by amansharma264
3

EXPLANATION.

Area bounded by the curve,

⇒ 2y = -x + 8.

Ordinates at points x = 2 and x = 4.

As we know that,

Equation 2y = -x + 8.

⇒ 2y = 8 - x.

⇒ y = 8 - x/2.

\sf Area = \int\limits^b_a {y} \, dx

Put the value of y = 8 - x/2 in equation, we get.

\sf Area = \int\limits^4_2 {\dfrac{8 - x}{2} } \, dx

\sf Area = \dfrac{1}{2}  \int\limits^4_2 {(8 - x)} \, dx

\sf Area = \dfrac{1}{2} \int\limits^4_2 {8} \, dx - \dfrac{1}{2} \int\limits^4_2 {x} \, dx

\sf Area = \dfrac{1}{2} \bigg[ 8x - \dfrac{x^{2} }{2} \bigg]_2^4

\sf Area = \dfrac{1}{2} \bigg[8(4) - \dfrac{(4)^{2} }{2} \bigg] - \dfrac{1}{2} \bigg[ 8(2) - \dfrac{(2)^{2} }{2} \bigg]

\sf Area = \dfrac{1}{2} \bigg[ 32 - 8 - 16 + 2 \bigg]

\sf Area = \dfrac{1}{2} \bigg[ 34 - 24 \bigg]

Area = 5 S.q units.

                                                                                               

MORE INFORMATION.

Symmetrical area.

If the curve is symmetrical about a coordinate axis ( or a line or origin ) then we find the area of one symmetrical portion and multiply it by the number of symmetrical portions to get the required area.

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question :-  }}

Find the area bounded by the curve 2y = x+8, x axis and the lines x=2 and x=4.

\large\underline\purple{\bold{Solution :-  }}

\large\underline{\bold{❥︎Step :- 1 }}

☆ Curve Sketching:-

Gɪᴠᴇɴ :

Linear equation,

➢  \: \begin{gathered}\bf\blue{2y\: = \:x\: + \:8} \\ \end{gathered}

❶ Substituting 'x = 0' in the given equation, we get

\tt \ \: :  ⟼ 2y = 0 + 8

\tt \ \: :  ⟼ 2y = 8

\tt \ \: :  ⟼ y = 4

❷ Substituting 'y = 0' in the given equation, we get

\tt \ \: :  ⟼ 2 \times 0 = x + 8

\tt \ \: :  ⟼ 0 = x + 8

\tt \ \: :  ⟼ x =  -  \: 8

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 4 \\ \\ \sf  - 8 & \sf 0 \end{array}} \\ \end{gathered}

\large\underline{\bold{❥︎Step :- 2 }}

\tt \ \: :  ⟼ Required \:  Area =  \: \int_2^4 \: ydx

\tt \ \: :  ⟼ \int_2^4 \: \dfrac{x + 8}{2}  \: dx

\tt \ \: :  ⟼ \dfrac{1}{2} \tt \ \:  \int_2^4 \: (x + 8) \: dx

\tt \ \: :  ⟼ \dfrac{1}{2}  \bigg[\dfrac{ {x}^{2} }{2}  + 8x \bigg]_2^4

\tt \ \: :  ⟼ \dfrac{1}{2}  \bigg((8 + 32) - (2 + 16) \bigg)

\tt\implies \:11 \: square \: units

Attachments:
Similar questions