Math, asked by 12ahujagitansh, 3 days ago

Find the area bounded by the curve using integration

 \frac{ {x}^{2} }{9}  +  \frac{ {y}^{2} }{4}  = 1

Answers

Answered by mathdude500
42

\large\underline{\sf{Solution-}}

Given curve is

\rm \: \dfrac{ {x}^{2} }{9}  + \dfrac{ {y}^{2} }{4}  = 1 \\

It represents the equation of ellipse having center (0, 0) and intersecting the x - axis at (3, 0) and (- 3, 0) and y - axis at (0, 2) and (0, - 2).

Now,

\rm \:\dfrac{ {y}^{2} }{4}  = 1 - \dfrac{ {x}^{2} }{9} \\

\rm \:\dfrac{ {y}^{2} }{4}  = \dfrac{9 -  {x}^{2} }{9} \\

\rm \: {y}^{2}  =4\bigg( \dfrac{9 -  {x}^{2} }{9} \bigg)\\

\rm\implies \:y = \dfrac{2}{3} \sqrt{ {3}^{2} -  {x}^{2}  } \\

Now, as ellipse is symmetrical in all the four quadrants. So, we find the area of ellipse in first quadrant with respect to x axis from x = 0 to x = 3 and to find the total area, we multiply by 4.

So, required area is

\rm \:  =  \: 4\displaystyle\int_{0}^{3}\rm y \: dx \\

\rm \:  =  \: 4 \times  \frac{2}{3} \displaystyle\int_{0}^{3}\rm  \sqrt{ {3}^{2} -  {x}^{2}  }  \: dx \\

\rm \:  =  \: \dfrac{8}{3}\bigg(\dfrac{x}{2} \sqrt{ {3}^{2}  -  {x}^{2} } +  \dfrac{ {3}^{2} }{2} {sin}^{ - 1}  \dfrac{x}{3} \bigg)_{0}^{3}   \\

\rm \:  =  \: \dfrac{8}{3}\bigg(0+  \dfrac{ {3}^{2} }{2} {sin}^{ - 1}  \dfrac{3}{3}  - 0 - 0\bigg)   \\

\rm \:  =  \: \dfrac{8}{3}\bigg(\dfrac{9}{2} {sin}^{ - 1}1\bigg)   \\

\rm \:  =  \: 12 \times  \frac{\pi}{2}    \\

\rm \:  =  \: 6\pi \: square \: units \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \dfrac{1}{a} {tan}^{ - 1} \dfrac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } }  = log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } | + c  }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}  \frac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} } } = log |x +  \sqrt{ {x}^{2} +  {a}^{2}} | + c}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions