Math, asked by NPNMR, 9 months ago

Find the area bounded by the curve y = cos 2x,

x=0, x=π/2
and x-axis.​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{$y=cos\,2x$, $x=0$, $x=\frac{\pi}{2}$ and x axis}

\textbf{To find:}

\text{Area bounded by the given curve and the lines}

\textbf{Solution:}

\text{From the attachment,}

\text{Required area}

=\int\limits^{\frac{\pi}{4}}_0\,y\;dx+\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\,(-y)\;dx

=\int\limits^{\frac{\pi}{4}}_0\,cos2x\;dx+\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\,(-cos2x)\;dx

=\int\limits^{\frac{\pi}{4}}_0\,cos2x\;dx-\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\,cos2x\;dx

=[\dfrac{sin2x}{2}]^{\frac{\pi}{4}}_0-[\dfrac{sin2x}{2}]^{\frac{\pi}{2}}_{\frac{\pi}{4}}

=\dfrac{1}{2}[sin\frac{\pi}{2}-sin0]-\dfrac{1}{2}[sin\pi-sin\frac{\pi}{2}]

=\dfrac{1}{2}[1-0]-\dfrac{1}{2}[0-1]

=\dfrac{1}{2}+\dfrac{1}{2}

=1\;\text{square units}

\therefore\textbf{Area bounded by the given curve and the lines is 1 square units}

Attachments:
Similar questions