Math, asked by wwwdivyadj, 2 months ago

find the area bounded by the curve y2+x-4y=5 and the y axis?​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\: {y}^{2} + x - 4y = 5

Let first we convert in to standard form

\rm :\longmapsto\: {y}^{2}  -  4y = 5 - x

On adding 4 both sides, we get

\rm :\longmapsto\: {y}^{2}  -  4y  + 4= 5 - x + 4

\rm :\longmapsto\: {(y - 2)}^{2} =  - (x - 9)  -  - (1)

Its represents the left handed parabola whose vertex us ( 9, 2 ).

Let find the point of intersection with y - axis,

On y - axis, x = 0

So, equation (1), becomes

\rm :\longmapsto\: {(y - 2)}^{2} =  - (0 - 9)

\rm :\longmapsto\: {(y - 2)}^{2} =9

\rm :\longmapsto\:y - 2\: =  \:  \pm \: 3

\bf\implies \:y = 5 \:  \: or \:  \: y =  - 1

Hence, the point of intersection of the curve with y - axis is (0, 5) and (0, - 1).

So, the required area bounded by the curve with y - axis is given by

\rm :\longmapsto\:Area \:  = \displaystyle\int_{ - 1}^5 \tt \:x \: dy

\rm :\longmapsto\:Area \:  = \displaystyle\int_{ - 1}^5 \tt \: \bigg(9 -  {(y - 2)}^{2}  \bigg) \: dy

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:using \: (1) \bigg \}}

\rm \:  \:  =  \: \bigg(9y - \dfrac{ {(y - 2)}^{3} }{3}  \bigg)_{ - 1}^5

\rm \:  \:  =  \: \bigg(45 - \dfrac{ {(5 - 2)}^{3} }{3}  \bigg) - \bigg( - 9 - \dfrac{ {( - 1 - 2)}^{3} }{3}  \bigg)

\rm \:  \:  =  \: \bigg(45 - \dfrac{ {(3)}^{3} }{3}  \bigg) - \bigg( - 9 - \dfrac{ {( -3)}^{3} }{3}  \bigg)

\rm \:  \:  =45 - 9 + 9 - 9

\rm \:  \:  =  \: 36 \: square \: units

Attachments:
Answered by umarmir15
0

Answer:

The Answer will be 36 after solve the equation

Step-by-step explanation:



Attachments:
Similar questions