Math, asked by TrustedAnswerer19, 2 months ago

Find the area bounded by the following curve.
 {y}^{2}  = ax \: \:  \:  \:   \: and \\  {x}^{2}   + {y}^{2}  = 4ax
❌Spamming is not allowed

✅ Quality answer needed.​

Answers

Answered by mathdude500
63

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\: {y}^{2} = ax  -  -  - (1)

and

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  = 4ax -  -  - (2)

Step :- 1 Point of intersection of curves

Substituting (1) in (2), we get

\rm :\longmapsto\: {x}^{2} + ax = 4ax

\rm :\longmapsto\: {x}^{2} + ax -  4ax  = 0

\rm :\longmapsto\: {x}^{2}-  3ax  = 0

\rm :\longmapsto\:x( x- 3a) = 0

\bf\implies \:x = 0 \:  \: or \:  \: x = 3a

➢ Pair of points of intersection of given curves are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 3a & \sf  \sqrt{3}a  \\ \\ \sf 3a & \sf  -  \sqrt{3}a  \end{array}} \\ \end{gathered}

Step :- 2 Curve Sketching

\rm :\longmapsto\: {y}^{2} = ax

represents the right handed parabola with vertex (0, 0).

And

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  = 4ax

\rm :\longmapsto\: {x}^{2}  - 4ax+  {y}^{2}  = 0

\rm :\longmapsto\: {x}^{2}  - 4ax +  {4a}^{2} +  {y}^{2}  = 4 {a}^{2}

\rm :\longmapsto\: {(x - 2a)}^{2} +  {y}^{2}  =  {(2a)}^{2}

So, it represents a circle whose centre is (2a, 0) and radius = 2a.

Step :- 3 Required Area is

\rm \:  =  \:  \:2\displaystyle\int_0^{3a}\sf (y_{circle} - y_{parabola})dx

\rm \: = \:2\displaystyle\int_0^{3a}\sf \bigg( \sqrt{ {(2a)}^{2}  -  {(x - 2a)}^{2} } -  \sqrt{a} \sqrt{x}\bigg)dx

\rm \:=2\bigg(\dfrac{x - 2a}{2} \sqrt{ {(2a)}^{2}  -  {(x - 2a)}^{2}} + \dfrac{ {4a}^{2} }{2} {sin}^{ - 1}\dfrac{x - 2a}{2a} -  \dfrac{2}{3} \sqrt{a} {x}^{ \frac{3}{2} }  \bigg)_0^{3a}

\rm \:  =2\bigg(\dfrac{a}{2} \sqrt{3}a +  {2a}^{2} {sin}^{ - 1}\dfrac{1}{2}  -  \dfrac{2 \sqrt{a} }{3}3 \sqrt{3}a \sqrt{a} -  {2a}^{2} {sin}^{ - 1}( - 1)\bigg)

\rm \:  =2\bigg(\dfrac{ \sqrt{3} {a}^{2} }{2}+{2a}^{2}\dfrac{\pi}{6}  -  2 \sqrt{3} {a}^{2} + {2a}^{2} \dfrac{\pi}{2}  \bigg)

\rm \:  =2\bigg(\dfrac{ \sqrt{3} {a}^{2} }{2}+{a}^{2}\dfrac{\pi}{3}  -  2 \sqrt{3} {a}^{2} + {a}^{2}\pi  \bigg)

\rm \:  =2 {a}^{2} \bigg(\dfrac{ \sqrt{3}  }{2}+\dfrac{\pi}{3}  -  2 \sqrt{3} + \pi  \bigg)

\rm \:  =2 {a}^{2} \bigg( - \dfrac{ 3\sqrt{3}  }{2}+\dfrac{4\pi}{3}   \bigg)  \: square \: units

Attachments:
Similar questions