Math, asked by elinorandrea7, 1 day ago

Find the area bounded by the lines y = 1 + |x + 1|, x = - 3, x = 1, y = 0​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider,

\rm \: y = 1 +  |x + 1|  \\

We know, By definition of Modulus function,

\begin{gathered}\begin{gathered}\bf\:  |x|  = \begin{cases} &\sf{ \:  \: x, \:  \: x \geqslant 0} \\ \\  &\sf{ - x, \:  \: x < 0} \end{cases}\end{gathered}\end{gathered}

So, using this,

\begin{gathered}\begin{gathered}\bf\:  |x + 1|  = \begin{cases} &\sf{ \:  \: x + 1, \:  \: x  + 1\geqslant 0} \\ \\  &\sf{ - (x + 1), \:  \: x + 1 < 0} \end{cases}\end{gathered}\end{gathered}

can be rewritten as

\begin{gathered}\begin{gathered}\bf\:  |x + 1|  = \begin{cases} &\sf{ \:  \: x  + 1, \:  \: x\geqslant  - 1} \\ \\  &\sf{ - x - 1, \:  \: x<  - 1} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: 1 +  |x + 1|  = \begin{cases} &\sf{ \:  \: 1 + x  + 1, \:  \: x\geqslant  - 1} \\ \\  &\sf{ 1- x - 1, \:  \: x<  - 1} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: y = 1 +  |x + 1|  = \begin{cases} &\sf{ \:  \: x  + 2, \:  \: x\geqslant  - 1} \\ \\  &\sf{ \:  \:  \:  \:  \:  - x, \:  \: x<  - 1} \end{cases}\end{gathered}\end{gathered}

So, Let us first plot the line

\rm \: y = x + 2 -  -  - (1) \\

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf 1 \\ \\ \sf 0 & \sf 2 \\ \\ \sf 1 & \sf 3 \end{array}} \\ \end{gathered}

Now, Consider the second line

\rm \: y =  - x -  -  - (2) \\

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 2 & \sf 2 \\ \\ \sf  - 3 & \sf 3 \\ \\ \sf  - 4 & \sf 4 \end{array}} \\ \end{gathered}

[ See the attachment ]

Now, Required area is given by

\rm \:  =  \: \displaystyle\int_{ - 3}^{ - 1}\rm  y_{line \: 2} \: dx \:  +  \: \displaystyle\int_{ - 1}^{1}\rm  y_{line \: 1} \: dx \\

\rm \:  =  \: \displaystyle\int_{ - 3}^{ - 1}\rm  ( - x) \: dx \:  +  \: \displaystyle\int_{ - 1}^{1}\rm  (x + 2) \: dx \\

\rm \:  =  \: \bigg[ - \dfrac{ {x}^{2} }{2} \bigg]_{ - 3}^{ - 1} + \bigg[\dfrac{ {x}^{2} }{2}  + 2x\bigg]_{ - 1}^{1} \\

\rm \:  =  \: \dfrac{1}{2}( - 1 + 9)  +\bigg[\dfrac{1}{2} + 2 -  \frac{1}{2} + 2 \bigg]  \\

\rm \:  =  \: \dfrac{1}{2}(8) + 4  \\

\rm \:  =  \: 4 + 4 \\

\rm \:  =  \: 8 \: square \: units \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Answered by Avni2348
1

Answer:

Concept:

Two curves f(x, y) = 0 and g(x, y) = 0 cut/touch at a point (a, b) if f(a, b) = g(a, b) = 0.

The area under the function y = f(x) from x = a to x = b and the x-axis is given by the definite integral , for curves which are entirely on the same side of the x-axis in the given range.

If the curves are on both the sides of the x-axis, then we calculate the areas of both the sides separately and add them.

Definite integral: If ∫ f(x) dx = g(x) + C, then

.

Calculation:

Let's say that the two curves are f(x, y) = x + y - 3 = 0 and g(x, y) = x2 - y - 9 = 0.

The points of their intersection are the points where f(x, y) = g(x, y).

⇒ x + y - 3 = x2 - y - 9 = 0

⇒ -x - y + 3 = x2 - y - 9 = 0

⇒ x2 + x - 12 = 0

⇒ x2 + 4x - 3x - 12 = 0

⇒ x(x + 4) - 3(x + 4) = 0

⇒ (x + 4)(x - 3) = 0

⇒ x + 4 = 0 OR x - 3 = 0

⇒ x = -4 OR x = 3.

And, y = 3 - (-4) = 7 OR y = 3 - 3 = 0.

Hence, the curves intersect at the points B(3, 0) and C(-4, 7) as shown in the diagram below:

F1 Aman 21.11.20 Pallavi D7

The points where y = x2 - 9 cuts the x-axis (y = 0) are A(-3, 0) and B(3, 0).

The required area is the shaded part ABC = Area of BDC - Area of ADC.

Similar questions