Math, asked by soni4771, 3 months ago

Find the area bounded by the parabola x² =8y and y²=8x

Answers

Answered by biologylover69
0

Answer:y  

2

=8x and x  

2

=8y

the points of intersection

x  

2

/8=  

8x

​  

 

8  

2

 

x  

3

 

​  

=8

x=0 and x=8

So, area b//w curves is

0

​  

 

8

​  

(  

8x

​  

−x  

2

/8)dx

8

​  

 

0

​  

 

8

​  

 

x

​  

dx−  

0

​  

 

8

​  

(  

8

x  

3

 

​  

)dx=  

3

2  

8

​  

 

​  

(x)  

3/2

∣  

0

8

​  

−1/8  

3

x  

3

 

​  

∣  

0

8

​  

 

2/38  

2

−1/8(8  

3

/3)

=  

3

2.8  

2

 

​  

−8  

2

/3=  

3

64

​  

squnitsy  

2

=8x and x  

2

=8y

the points of intersection

x  

2

/8=  

8x

​  

 

8  

2

 

x  

3

 

​  

=8

x=0 and x=8

So, area b//w curves is

0

​  

 

8

​  

(  

8x

​  

−x  

2

/8)dx

8

​  

 

0

​  

 

8

​  

 

x

​  

dx−  

0

​  

 

8

​  

(  

8

x  

3

 

​  

)dx=  

3

2  

8

​  

 

​  

(x)  

3/2

∣  

0

8

​  

−1/8  

3

x  

3

 

​  

∣  

0

8

​  

 

2/38  

2

−1/8(8  

3

/3)

=  

3

2.8  

2

 

​  

−8  

2

/3=  

3

64

​  

squnitsy  

2

=8x and x  

2

=8y

the points of intersection

x  

2

/8=  

8x

​  

 

8  

2

 

x  

3

 

​  

=8

x=0 and x=8

So, area b//w curves is

0

​  

 

8

​  

(  

8x

​  

−x  

2

/8)dx

8

​  

 

0

​  

 

8

​  

 

x

​  

dx−  

0

​  

 

8

​  

(  

8

x  

3

 

​  

)dx=  

3

2  

8

​  

 

​  

(x)  

3/2

∣  

0

8

​  

−1/8  

3

x  

3

 

​  

∣  

0

8

​  

 

2/38  

2

−1/8(8  

3

/3)

=  

3

2.8  

2

 

​  

−8  

2

/3=  

3

64

​  

squnits

Similar questions