Math, asked by surenderdhankher1068, 18 hours ago

find the area covered by a road roller of width 80 CM and diameter 140 cm in 40 revolutions

Answers

Answered by Anonymous
29

Answer:

Diagram :

☼ Figure of cylindrical roller with radius and height :

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{70\ cm}}\put(9,17.5){\sf{80\ cm}}\end{picture}

\begin{gathered}\end{gathered}

Given :

  • → The width of a roller = 80 cm.
  • → The diameter of roller = 140 cm.

\begin{gathered}\end{gathered}

To Find :

  • → Radius of roller
  • → Area covered by roller in 40 revolutions.

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\sf{Radius =  \dfrac{Diameter}{2}}}}}

\longrightarrow\small{\underline{\boxed{\sf{CSA \:  of  \: cylinder = 2 \pi rh}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Area \:  of  \: 40  \: revolutions = 40 × CSA  \: of  \: roller}}}}}}

\begin{gathered}\end{gathered}

Solution :

☼ Firstly, we have to find the find the radius of roller and here we have given that the diameter of roller is 140 cm. So, substituting the values in the formula :

\longrightarrow \:  \: {\sf{Radius =  \dfrac{Diameter}{2}}}

\longrightarrow \:  \: {\sf{Radius =  \dfrac{140}{2}}}

\longrightarrow \:  \: {\sf{Radius =   \cancel{\dfrac{140}{2}}}}

\longrightarrow \:  \: {\sf{Radius =  70 \: cm}}

\longrightarrow \:  \: {\sf{\underline{\underline{\purple{Radius =  70 \: cm}}}}}

∴ The radius of roller is 70 cm.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

☼ Now, we know the radius then now finding the csa of roller by substituting the values in the formula :

\longrightarrow \:  \: {\sf{CSA \:  of  \: cylinder = 2 \pi rh}}

{\longrightarrow \:  \: {\sf{CSA \:  of  \: cylinder = 2 \times \dfrac{22}{7}  \times 70 \times 80}}}

{\longrightarrow \:  \: {\sf{CSA \:  of  \: cylinder = 2 \times \dfrac{22}{\cancel{7}}  \times  \cancel{70} \times 80}}}

{\longrightarrow \:  \: {\sf{CSA \:  of  \: cylinder = 2 \times 22 \times 10 \times 80}}}

{\longrightarrow \:  \: {\sf{CSA \:  of  \: cylinder = 44 \times 800}}}

{\longrightarrow \:  \: {\sf{CSA \:  of  \: cylinder = 35200 \:  {cm}^{2}}}}

{\longrightarrow\:\:{\sf{\underline{\underline{\purple{CSA \:  of  \: cylinder = 35200 \:  {cm}^{2}}}}}}}

∴ The csa of cylindrical roller is 35200 cm².

☼ Now, let's find out the area covered by the roller in 40 revolutions :

{\longrightarrow \:  \: {\sf{Area \:  of  \: 40  \: revolutions = 40 × CSA  \: of  \: roller}}}

{\longrightarrow \:  \: {\sf{Area \:  of  \: 40  \: revolutions = 40 × 35200}}}

{\longrightarrow \:  \: {\sf{Area \:  of  \: 40  \: revolutions = 1408000 \:  {cm}^{2}}}}

{\longrightarrow \:  \: {\sf{\underline{\underline{\purple{Area \:  of  \: 40  \: revolutions = 1408000 \:  {cm}^{2}}}}}}}

∴ The area covered by roller in 40 revolutions is 1408000 cm².

\begin{gathered}\end{gathered}

Learn More :

\boxed{\begin{minipage}{6.2 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{minipage}}

{\underline{\rule{220pt}{3pt}}}

Similar questions