Math, asked by ritadennis731, 1 year ago

Find the area enclosed between two concentric circles of radii 4cm and 3cm

Answers

Answered by VaibhavSR
0

Answer:22cm^{2}

Step-by-step explanation:

  • To find the area between two concentric circle of radii 4cm and 3cm we need to subtract the area of the smaller circle with area of bigger circle.
  • Area of circle with radii 4cm=\pi r^{2}

                                                         =\frac{22}{7}*(4)^{2}

                                                         =\frac{22}{7}*16

                                                         =\frac{352}{7}cm^{2}

  • Area of circle with radii 3cm=\pi r^{2}

                                                      =\frac{22}{7}*(3)^{2}

                                                      =\frac{22}{7}*9

                                                      =\frac{198}{7}cm^{2}

  • Area between two circles=(\frac{352}{7}-\frac{198}{7})  cm^{2}

                                                   =\frac{154}{7}cm^{2}

                                                   =22cm^{2}

  • Hence,area between the two circles=22cm^{2}





                                                     



         

Answered by sourasghotekar123
0

Answer:

The enclosed area is 22\:cm.

Step-by-step explanation:

Given,

The radius of the circle 4\:cm and 3\:cm.

Thus,

The area of the circle with 4\:cm = \pi R^{2}

The area of the circle with 3\:cm = \pi r^{2}

The area enclosed = The area of the circle with 4\:cm - The area of the circle with 3\:cm

The area enclosed = \pi R^{2} - \pi r^{2}

= \pi (R^{2} -r^{2})

As it is known,

\pi  = \frac{22}{7}\\R = 4\\r = 3

Putting all the values,

= \frac{22}{7}(16-9)\\= 22

Thus, the enclosed area is 22\: cm.

#SPJ3

Similar questions