Math, asked by swapnilkham18, 3 months ago

Find the area enclosed by
y = x and y = x2 in first
quadrant​

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

First \: we \: find \: the \: cordinates \: of \\  point \: P

Y = x and y = x²

⟹ \: x=x </p><p> {}^{2}

⟹ x=0,1

The\: value \: x=0 \:correspond \: to \: O(0,0).

For \: P, x=1</p><p>Now, \: the \: required \: area

</p><p>A=∫ </p><p>{0}^{1} </p><p>	</p><p> (y </p><p>1</p><p>	</p><p> −y </p><p>2</p><p>	</p><p> )dx

=∫ </p><p> {0}^{1} </p><p>	</p><p> (x−x </p><p>2</p><p> )dx \\ </p><p>=[ </p><p> \frac{x {}^{2} }{2} </p><p>	</p><p> −  \frac{x {}^{3} }{3} </p><p> </p><p>	</p><p> ] </p><p> {0}^{1} </p><p> </p><p>  \\ </p><p>⟹A= </p><p> \frac{1}{6} </p><p>

Similar questions